基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The popularity of news,which conveys newsworthy events which occur during day to people,is substantially important for the spectator or audience.People interact with news website and share news links or their opinions.This study uses supervised learning based machine learning techniques in order to predict news popularity in social media sources.These techniques consist of basically two phrases:a)the training data is sent as input to the classifier algorithm,b)the performance of prelearned algorithm is tested on the testing data.And so,a knowledge discovery from the data is performed.In this context,firstly,twelve datasets from a set of data are obtained within the frame of four categories:Economic,Microsoft,Obama and Palestine.Second,news popularity prediction in social network services is carried out by utilizing Gradient Boosted Trees,Multi-Layer Perceptron and Random Forest learning algorithms.The prediction performances of all algorithms are examined by considering Mean Absolute Error,Root Mean Squared Error and the R-squared evaluation metrics.The results show that most of the models designed by using these algorithms are proved to be applicable for this subject.Consequently,a comprehensive study for the news prediction is presented,using different techniques,drawing conclusions about the performances of algorithms in this study.
推荐文章
Real与Media流媒体技术比较
Real
Media
流媒体
比较
Geo Media到Arc GIS的数据转换方法
Geo Media
Arc GIS
数据格式转换
坐标变换
数据处理
NEWS评分对急性胰腺炎病人病情严重程度的预测价值
早期预警评分
急性胰腺炎
严重程度
预测
价值
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Modeling and Predicting of News Popularity in Social Media Sources
来源期刊 计算机、材料和连续体(英文) 学科 工学
关键词 NEWS POPULARITY SENTIMENT SCORES social network services Gradient Boosted Machines MULTI-LAYER PERCEPTRON Random Forest
年,卷(期) 2019,(7) 所属期刊栏目
研究方向 页码范围 69-80
页数 12页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
NEWS
POPULARITY
SENTIMENT
SCORES
social
network
services
Gradient
Boosted
Machines
MULTI-LAYER
PERCEPTRON
Random
Forest
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机、材料和连续体(英文)
月刊
1546-2218
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
346
总下载数(次)
4
总被引数(次)
0
论文1v1指导