基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对移动机器人路径规划中使用蚁群算法(ACO)易陷入局部最优和收敛速度慢的问题,提出了一种适用于机器人静态路径寻优的改进免疫遗传优化蚁群算法(IMGAC).该算法可以根据实际情况自动调整变异概率和变异方式,以及自动调节个体免疫位的长度,将通过改进的变异算子和免疫算子嵌入蚁群算法来提高全局寻优能力与收敛速度.仿真及实验表明:相比于经典ACO算法以及最大最小蚂蚁系统,IMGAC算法收敛速度更快,全局寻优能力更强.利用该算法寻找移动机器人最优路径,提高了静态路径寻优的效果和效率.
推荐文章
基于改进蚁群算法的移动机器人路径规划研究
移动机器人路径规划
新型蚁群算法
数学模型
收敛速度
局部最优
改进蚁群算法在移动机器人路径规划中的研究
蚁群算法
移动机器人
路径规划
最优路径
基于改进蚁群算法的移动机器人路径规划
移动机器人
路径规划
蚁群算法
信息素更新
蚁群算法及其在移动机器人路径规划中的应用
蚁群算法
路径规划
移动机器人
智能计算
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进免疫遗传优化蚁群算法的移动机器人路径寻优研究
来源期刊 计量学报 学科 工学
关键词 计量学 路径寻优 移动机器人 遗传算法 蚁群算法
年,卷(期) 2019,(3) 所属期刊栏目
研究方向 页码范围 505-510
页数 6页 分类号 TB973|TP389.1
字数 3614字 语种 中文
DOI 10.3969/j.issn.1000-1158.2019.03.25
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张大伟 郑州大学信息工程学院 22 90 5.0 9.0
2 李江昊 燕山大学信息科学与工程学院 19 95 7.0 9.0
3 赵春芳 燕山大学信息科学与工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (60)
共引文献  (249)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(7)
  • 参考文献(1)
  • 二级参考文献(6)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(8)
  • 参考文献(1)
  • 二级参考文献(7)
2011(8)
  • 参考文献(1)
  • 二级参考文献(7)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
计量学
路径寻优
移动机器人
遗传算法
蚁群算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计量学报
月刊
1000-1158
11-1864/TB
大16开
北京1413信箱
2-798
1980
chi
出版文献量(篇)
3549
总下载数(次)
8
论文1v1指导