基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决红外图像在复杂海面干扰下的海天线检测问题,本文提出了一种基于边界先验双模型贝叶斯决策的海天线检测方法.该方法首先将海空背景下的红外图像划分为子图像块,以子图像块的离散余弦变换的主余弦谱作为子图像块特征;然后,基于边界先验建立了海、天子图像块的贝叶斯决策模型,对海、天子图像块进行粗划分;之后,利用粗划分的子图像块集合建立细划分贝叶斯决策模型,利用重叠子图像块滑动细划分方法,获取海天线上候选点;最后,利用随机抽样一致性(RANSAC)算法得到海天线模型参数,实现海天线的检测.实验结果表明,该方法能有效检测出复杂海空背景下的海天线,对于海杂波、亮斑等干扰较多的复杂红外图像具有更优的检测效果,运算速度较快.
推荐文章
基于贝叶斯推理的决策树模型
决策树
贝叶斯推理
逆跳马尔科夫链蒙特卡洛
分类准确率
递归分割
基于混合先验分布的贝叶斯因子分析模型
数学模型
数据压缩
参数估计
因子分析
贝叶斯方法
无信息先验下平稳AR(1)模型的贝叶斯推断
时间序列
AR(1)模型
无信息先验
后验分布
贝叶斯分析
基于贝叶斯匹配追踪的SAR图像重构
压缩感知
SAR图像
高斯混合参数
贝叶斯
EM
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于边界先验双模型贝叶斯决策的红外图像海天线检测
来源期刊 信号处理 学科 工学
关键词 红外图像 海天线检测 贝叶斯决策 离散余弦变换 随机抽样一致性算法
年,卷(期) 2019,(5) 所属期刊栏目 应用
研究方向 页码范围 877-887
页数 11页 分类号 TN957.52
字数 7338字 语种 中文
DOI 10.16798/j.issn.1003-0530.2019.05.020
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (96)
共引文献  (58)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1981(2)
  • 参考文献(1)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(7)
  • 参考文献(1)
  • 二级参考文献(6)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(11)
  • 参考文献(0)
  • 二级参考文献(11)
2011(11)
  • 参考文献(0)
  • 二级参考文献(11)
2012(11)
  • 参考文献(1)
  • 二级参考文献(10)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(8)
  • 参考文献(1)
  • 二级参考文献(7)
2015(11)
  • 参考文献(2)
  • 二级参考文献(9)
2016(11)
  • 参考文献(2)
  • 二级参考文献(9)
2017(5)
  • 参考文献(2)
  • 二级参考文献(3)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
红外图像
海天线检测
贝叶斯决策
离散余弦变换
随机抽样一致性算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号处理
月刊
1003-0530
11-2406/TN
大16开
北京鼓楼西大街41号
18-143
1985
chi
出版文献量(篇)
5053
总下载数(次)
13
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导