基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
According to the wave power rule,the second derivative of a functionχ(t)with respect to the variable t is equal to negative n times the functionχ(t)raised to the power of 2n?1.Solving the ordinary differential equations numerically results in waves appearing in the figures.The ordinary differential equation is very simple;however,waves,including the regular amplitude and period,are drawn in the figure.In this study,the function for obtaining the wave is called the leaf function.Based on the leaf function,the exact solutions for the undamped and unforced Duffing equations are presented.In the ordinary differential equation,in the positive region of the variableχ(t),the second derivative d^2χ(t)/dt^2 becomes negative.Therefore,in the case that the curves vary with the time under the conditionχ(t)>0,the gradient dχ(t)/d constantly decreases as time increases.That is,the tangential vector on the curve of the graph(with the abscissa and the ordinate χ(t)changes from the upper right direction to the lower right direction as time increases.On the other hand,in the negative region of the variableχ(t),the second derivative d^2χ(t)/dt^2 becomes positive.The gradient d χ(t)/d constantly increases as time decreases.That is,the tangent vector on the curve changes from the lower right direction to the upper right direction as time increases.Since the behavior occurring in the positive region of the variable χ(t)and the behavior occurring in the negative region of the variableχ(t)alternately occur in regular intervals,waves appear by these interactions.In this paper,I present seven types of damped and divergence exact solutions by combining trigonometric functions,hyperbolic functions,hyperbolic leaf functions,leaf functions,and exponential functions.In each type,I show the derivation method and numerical examples,as well as describe the features of the waveform.
推荐文章
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Damped and Divergence Exact Solutions for the Duffing Equation Using Leaf Functions and Hyperbolic Leaf Functions
来源期刊 工程与科学中的计算机建模(英文) 学科 数学
关键词 LEAF FUNCTIONS HYPERBOLIC LEAF FUNCTIONS lemniscate FUNCTIONS jacobi elliptic FUNCTIONS ordinary differential EQUATIONS DUFFING equation nonlinear EQUATIONS
年,卷(期) 2019,(3) 所属期刊栏目
研究方向 页码范围 599-647
页数 49页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
LEAF
FUNCTIONS
HYPERBOLIC
LEAF
FUNCTIONS
lemniscate
FUNCTIONS
jacobi
elliptic
FUNCTIONS
ordinary
differential
EQUATIONS
DUFFING
equation
nonlinear
EQUATIONS
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
工程与科学中的计算机建模(英文)
月刊
1526-1492
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
299
总下载数(次)
1
总被引数(次)
0
论文1v1指导