基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
脑疲劳是由于持续进行脑力劳动导致的一种状态,脑电被认为是脑疲劳状态检测的最佳工具.如何选取合适的脑疲劳特征成为脑疲劳检测的关键问题,传统模式识别中手动提取特征会产生信息损失,针对脑电的时空特性,本文设计了具有时域卷积核、空间域卷积核的深层卷积神经网络和浅层卷积神经网络两种网络结构,将特征提取和状态分类合二为一,对正常态与疲劳态脑电数据进行分类,可视化了卷积神经网络的空间域卷积核.结果 表明,浅层卷积神经网络平均分类正确率为98.868%,深层卷积神经网络平均分类正确率为98.217%,均高于传统分类方法,通过空间域卷积核的可视化,能够了解不同导联在网络中的参与程度,验证了该模型在脑疲劳检测任务中具有很高的有效性,同时为脑疲劳检测提供了新思路.
推荐文章
基于多尺度池化卷积神经网络的疲劳检测方法研究
视觉特征分析
多尺度池化
卷积神经网络
疲劳检测
人脸检测
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
基于卷积神经网络的肺炎检测系统
卷积神经网络
胸部X光影像
肺炎诊断
图像预处理
VGG
特征提取
一种基于卷积神经网络的疲劳驾驶检测方法
疲劳驾驶检测
人脸检测
人脸特征点
卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 卷积神经网络在脑疲劳检测中的研究
来源期刊 信号处理 学科 医学
关键词 脑疲劳状态 脑电 模式识别 卷积神经网络
年,卷(期) 2019,(4) 所属期刊栏目 短文与研究通讯
研究方向 页码范围 704-711
页数 8页 分类号 R318
字数 4420字 语种 中文
DOI 10.16798/j.issn.1003-0530.2019.04.022
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (71)
共引文献  (43)
参考文献  (13)
节点文献
引证文献  (2)
同被引文献  (7)
二级引证文献  (0)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(11)
  • 参考文献(2)
  • 二级参考文献(9)
2014(7)
  • 参考文献(1)
  • 二级参考文献(6)
2015(7)
  • 参考文献(2)
  • 二级参考文献(5)
2016(4)
  • 参考文献(2)
  • 二级参考文献(2)
2017(6)
  • 参考文献(4)
  • 二级参考文献(2)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
脑疲劳状态
脑电
模式识别
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号处理
月刊
1003-0530
11-2406/TN
大16开
北京鼓楼西大街41号
18-143
1985
chi
出版文献量(篇)
5053
总下载数(次)
13
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导