基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文提出了一种基于样本图像局部模式聚类的卷积核初始化方法,该方法可用于卷积神经网络(Convolutional neural network,CNN)训练中卷积核的初始化.在卷积神经网络中,卷积核的主要作用可看成是利用匹配滤波提取图像中的局部模式,并将其作为后续图像目标识别的特征.为此本文在图像训练集中选取一部分典型的样本图像,在这些图像中抽取与卷积核相同大小的子图作为图像局部模式矢量集合.首先对局部模式子图集合应用拓扑特性进行粗分类,然后对粗分类后的每一子类采用势函数聚类的方法获取样本图像中的典型局部模式子图,构成候选子图模式集,用它们作为CNN的初始卷积核进行训练.实验结果表明,本文方法可以明显加速CNN网络训练初期的收敛速度,同时对最终训练后的网络识别精度也有一定程度的提高.
推荐文章
结合高斯核函数的卷积 神经网络跟踪算法
视觉跟踪
卷积神经网络
高斯核函数
粒子滤波
基于并行卷积核交叉模块的卷积神经网络设计
卷积神经网络
网络改进
卷积核
图像分类
特征提取
结果分析
基于KPCA初始化卷积神经网络的方法
卷积神经网络
卷积核初始化
主成分分析
核主成分分析
MNIST
基于卷积神经网络的植物图像分类方法研究
卷积神经网络
图像特征
图像分类
全卷积网络
植物图像
数据集
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 卷积神经网络(CNN)训练中卷积核初始化方法研究
来源期刊 信号处理 学科 工学
关键词 卷积神经网络 卷积核初始化 图像局部模式 聚类
年,卷(期) 2019,(4) 所属期刊栏目 应用
研究方向 页码范围 641-648
页数 8页 分类号 TP183
字数 6738字 语种 中文
DOI 10.16798/j.issn.1003-0530.2019.04.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 裴继红 深圳大学信息工程学院 36 232 10.0 13.0
2 赵阳 深圳大学信息工程学院 8 13 2.0 3.0
3 朱继洪 深圳大学信息工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (4)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
卷积核初始化
图像局部模式
聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号处理
月刊
1003-0530
11-2406/TN
大16开
北京鼓楼西大街41号
18-143
1985
chi
出版文献量(篇)
5053
总下载数(次)
13
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导