基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Keyphrase greatly provides summarized and valuable information.This information can help us not only understand text semantics,but also organize and retrieve text content effectively.The task of automatically generating it has received considerable attention in recent decades.From the previous studies,we can see many workable solutions for obtaining keyphrases.One method is to divide the content to be summarized into multiple blocks of text,then we rank and select the most important content.The disadvantage of this method is that it cannot identify keyphrase that does not include in the text,let alone get the real semantic meaning hidden in the text.Another approach uses recurrent neural networks to generate keyphrases from the semantic aspects of the text,but the inherently sequential nature precludes parallelization within training examples,and distances have limitations on context dependencies.Previous works have demonstrated the benefits of the self-attention mechanism,which can learn global text dependency features and can be parallelized.Inspired by the above observation,we propose a keyphrase generation model,which is based entirely on the self-attention mechanism.It is an encoder-decoder model that can make up the above disadvantage effectively.In addition,we also consider the semantic similarity between keyphrases,and add semantic similarity processing module into the model.This proposed model,which is demonstrated by empirical analysis on five datasets,can achieve competitive performance compared to baseline methods.
推荐文章
基于Self-Attention模型的机器翻译系统
神经机器翻译
Seq2Seq框架
注意力机制
Self-Attention模型
结合LDA与Self-Attention的短文本情感分类方法
主题词
短文本
Self-Attention
潜在狄利克雷分布(LDA)
word2vec
融合Self-Attention机制和n-gram卷积核的印尼语复合名词自动识别方法研究
印尼语复合名词短语
Self-Attention机制
卷积神经网络
自动识别
条件随机场
Mechanism of accelerated dissolution of mineral crystals by cavitation erosion
Cavitation erosion
Mineral dissolution
Plastic deformation
Stepwave
Gibbs free energy
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Keyphrase Generation Based on Self-Attention Mechanism
来源期刊 计算机、材料和连续体(英文) 学科 文学
关键词 Keyphrase generation self-attention MECHANISM encoder-decoder framework
年,卷(期) 2019,(8) 所属期刊栏目
研究方向 页码范围 569-581
页数 13页 分类号 H31
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Keyphrase
generation
self-attention
MECHANISM
encoder-decoder
framework
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机、材料和连续体(英文)
月刊
1546-2218
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
346
总下载数(次)
4
总被引数(次)
0
论文1v1指导