钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
任务中心
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
自动化技术与计算机技术期刊
\
计算机学报期刊
\
基于多任务迭代学习的论辩挖掘方法
基于多任务迭代学习的论辩挖掘方法
作者:
廖祥文
桂林
程学旗
陈国龙
陈泽泽
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
多任务学习
论辩挖掘
迭代模型
深度学习
卷积神经网络
摘要:
论辩挖掘可分为论点边界的检测、论点类型的识别、论点关系的抽取三个子任务.现有的工作大多数对子任务分别建模研究,忽略了三个子任务之间的关联信息,导致性能低下.另外,还有部分的工作采用流水线模型把三个子任务进行联合建模,由于流水线模型仍然是独立的看待每个子任务,为每个子任务训练单独的模型,存在错误传播的问题,且在训练过程中产生了冗余信息.因此,本文提出了一种基于多任务迭代学习的论辩挖掘方法.该方法将论辩挖掘三个任务并行地联合在一起学习,首先通过深度卷积神经网络(CNN)和高速神经网络(Highway Network),获得文本字符和词级别的浅层共享参数表示;然后输入双向长短时记忆循环神经网络(Bi-LSTM),利用论辩挖掘三个任务之间的关联信息进行同时训练,不仅可以避免错误传播,而且能够克服冗余信息的产生;最后,联结三个任务的Bi-LSTM网络输出作为下一次迭代的输入,来提高模型的性能.实验采用了德国UKP实验室公开的学生论文数据集,实验结果表明,与目前最好的基准方法对比,该方法的准确率指标提高了2.74%,“F1(100%)”和“F1(50%)”指标分别提高了1.05%和1.19%,很好地验证了该方法的有效性.
暂无资源
收藏
引用
分享
推荐文章
基于多任务学习的自然图像分类研究
多任务学习
自然图像
相关性
基于多任务学习的多源数据分类研究
多源学习
多分类
任务相关性
多任务学习
基于消息驱动的多任务操作机制
消息驱动
多任务
程控交换机
基于BERT模型的多任务法律案件智能判决方法
自然语言处理
判决预测
深度神经网络
多任务学习
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
基于多任务迭代学习的论辩挖掘方法
来源期刊
计算机学报
学科
工学
关键词
多任务学习
论辩挖掘
迭代模型
深度学习
卷积神经网络
年,卷(期)
2019,(7)
所属期刊栏目
研究方向
页码范围
1524-1538
页数
15页
分类号
TP391
字数
12016字
语种
中文
DOI
10.11897/SP.J.1016.2019.01524
五维指标
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(0)
共引文献
(0)
参考文献
(4)
节点文献
引证文献
(4)
同被引文献
(1)
二级引证文献
(0)
1997(2)
参考文献(2)
二级参考文献(0)
2011(1)
参考文献(1)
二级参考文献(0)
2017(1)
参考文献(1)
二级参考文献(0)
2019(4)
参考文献(0)
二级参考文献(0)
引证文献(4)
二级引证文献(0)
2019(4)
引证文献(4)
二级引证文献(0)
研究主题发展历程
节点文献
多任务学习
论辩挖掘
迭代模型
深度学习
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机学报
主办单位:
中国计算机学会
中国科学院计算技术研究所
出版周期:
月刊
ISSN:
0254-4164
CN:
11-1826/TP
开本:
大16开
出版地:
中国科学院计算技术研究所(北京2704信箱)
邮发代号:
2-833
创刊时间:
1978
语种:
chi
出版文献量(篇)
5154
总下载数(次)
49
期刊文献
相关文献
1.
基于多任务学习的自然图像分类研究
2.
基于多任务学习的多源数据分类研究
3.
基于消息驱动的多任务操作机制
4.
基于BERT模型的多任务法律案件智能判决方法
5.
多任务学习的不平衡SVM+算法
6.
临近空间多任务规划求解方法
7.
面向数据流的多任务多核在线学习算法
8.
基于遗传算法的水下航行器制导系统多任务调度方法研究
9.
基于多任务管理系统的高清视频处理
10.
基于多任务联合稀疏表示的高光谱图像分类算法
11.
一种面向片上系统的多任务映射方法
12.
基于树结构的多任务学习算法
13.
基于多任务学习的正逆向情绪分值回归方法
14.
基于多任务学习的自然图像分类研究
15.
基于自发表情数据集预训练的多任务深度网络表情识别方法
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
任务中心
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
计算机学报2022
计算机学报2021
计算机学报2020
计算机学报2019
计算机学报2018
计算机学报2017
计算机学报2016
计算机学报2015
计算机学报2014
计算机学报2013
计算机学报2012
计算机学报2011
计算机学报2010
计算机学报2009
计算机学报2008
计算机学报2007
计算机学报2006
计算机学报2005
计算机学报2004
计算机学报2003
计算机学报2002
计算机学报2001
计算机学报2000
计算机学报1999
计算机学报1998
计算机学报2019年第9期
计算机学报2019年第8期
计算机学报2019年第7期
计算机学报2019年第6期
计算机学报2019年第5期
计算机学报2019年第4期
计算机学报2019年第3期
计算机学报2019年第2期
计算机学报2019年第12期
计算机学报2019年第11期
计算机学报2019年第10期
计算机学报2019年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号