基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着互联网的普及、信息技术的飞速发展,信息安全的问题也日益严重,恶意代码是其中主要威胁之一.当前恶意代码呈现出数量巨大,技术不断更新的现状,恶意代码检测技术面临严峻挑战.因此,文中提出了基于指令序列特征和深度置信网络的恶意代码检测方法,它包括三个部分:样本预处理模块、特征构造与约简模块以及深度置信网络分类模块.数据预处理模块使用PEID、VMUNPACKER对恶意代码样本进行查壳、脱壳处理并用IDA pro对样本进行反汇编获取操作码;特征提取模块使用n-gram窗口滑动获取特征并采用信息增益的方法对特征进行选择;深度置信网络模块使用深度置信网络(DBN)在训练集上进行训练生成深度学习网络,再使用训练好的网络对样本进行分类与检测.实验结果表明,该方法相较于传统的恶意代码检测方法,检测速度和效率有较大的提高.
推荐文章
基于对象语义的恶意代码检测方法
恶意代码检测
系统对象
抗混淆
语义
状态变迁图
基于敏感点覆盖的恶意代码检测方法
恶意代码检测
敏感行为函数
系统函数调用图
敏感路径
符号执行
基于模糊识别恶意代码检测技术的研究
模糊识别
恶意代码
支持向量机
动静结合的网络恶意代码检测技术研究
恶意代码
数据检测
静态分析
动态运行
网络数据
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度置信网络的恶意代码检测方法研究
来源期刊 计算机技术与发展 学科 工学
关键词 恶意代码检测 反汇编 n-gram 信息增益 深度置信网络
年,卷(期) 2019,(7) 所属期刊栏目 安全与防范
研究方向 页码范围 93-97
页数 5页 分类号 TP302.1
字数 4262字 语种 中文
DOI 10.3969/j.issn.1673-629X.2019.07.019
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 田礼明 5 1 1.0 1.0
2 强晗 1 1 1.0 1.0
3 郭亚兰 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (4)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
恶意代码检测
反汇编
n-gram
信息增益
深度置信网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导