原文服务方: 化工学报       
摘要:
在实际工业过程中,异常值的干扰是不可避免的,现有的处理异常值方法会导致模型估计有偏差,并且没有考虑潜在异常值的影响.针对上述缺点,利用学生分布噪声来处理潜在异常值,提出一种适用于学生分布噪声情况的贝叶斯鲁棒辨识方法,并且将其与过采样结构相结合,推出了基于过采样结构的贝叶斯鲁棒辨识方法.仿真实验表明:本文提出的算法,随着异常值影响的增加,仍然保持较小的辨识误差,而传统辨识方法已不再适用,同时,还克服了传统结构需添加额外测试信号所带来的巨额成本.因此,本文的算法更适合于实际工业过程辨识.
推荐文章
基于贝叶斯网络的强鲁棒性零速检测方法
行人惯性导航
零速检测
步态周期
贝叶斯网络模型
Hammerstein-Wiener系统的递推贝叶斯参数辨识算法
参数估计
模块化系统
两阶段算法
递推贝叶斯算法
奇异值分解
基于贝叶斯方法的视觉跟踪
贝叶斯方法
分块跟踪
直方图
鲁棒性
基于贝叶斯方法的鲁棒语音切分
鲁棒性
语音切分
贝叶斯
切分模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于过采样结构的贝叶斯鲁棒辨识方法
来源期刊 化工学报 学科
关键词 异常值 学生分布噪声 贝叶斯变分法 鲁棒辨识 过采样结构
年,卷(期) 2019,(12) 所属期刊栏目 过程系统工程
研究方向 页码范围 4673-4679
页数 7页 分类号 TP 273
字数 语种 中文
DOI 10.11949/0438-1157.20190880
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (28)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(1)
  • 二级参考文献(0)
1964(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(7)
  • 参考文献(7)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
异常值
学生分布噪声
贝叶斯变分法
鲁棒辨识
过采样结构
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
化工学报
月刊
0438-1157
11-1946/TQ
大16开
1923-01-01
chi
出版文献量(篇)
11879
总下载数(次)
0
总被引数(次)
117834
论文1v1指导