基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
卷积神经网络通过卷积和池化操作提取图像在各个层次上的特征进而对目标进行有效识别,是深度学习网络中应用最广泛的一种.文中围绕一维距离像雷达导引头自动目标识别,开展基于卷积神经网络的目标高分辨距离像分类识别方法研究.首先,基于空中目标一维距离像姿态敏感性仿真生成近似平行交会条件下不同类型目标的高分辨距离像数据集;其次,构建一种一维卷积神经网络结构对目标高分辨距离像进行分类识别;作为比较,针对同类高分辨距离像数据集,分析了主成分分析-支持向量机方法的目标分类识别效果.结果 表明:基于卷积神经网络的目标分类识别算法有更好的识别能力,对高分辨距离像的姿态敏感性具有较强的适应性.
推荐文章
基于卷积神经网络的钣金件表面缺陷分类识别方法
卷积神经网络
缺陷检测
缺陷分割提取
窗口滑移检测
基于卷积神经网络的高分辨率雷达目标识别
高分辨距离像
雷达目标识别
卷积神经网络
批归一化
支持向量机
基于卷积神经网络的未知协议识别方法
深度学习
机器学习
卷积神经网络
未知协议识别
基于卷积神经网络的ECG信号识别方法
ECG信号识别
短时傅里叶变换
卷积神经网络
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的雷达目标HRRP分类识别方法
来源期刊 现代雷达 学科 工学
关键词 高分辨距离像 卷积神经网络 特征提取 目标识别
年,卷(期) 2019,(5) 所属期刊栏目 信号处理
研究方向 页码范围 33-38
页数 6页 分类号 TN957.51
字数 4098字 语种 中文
DOI 10.16592/j.cnki.1004-7859.2019.05.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 庄志洪 南京理工大学电子工程和光电技术学院 37 229 10.0 12.0
2 陆锦辉 南京理工大学电子工程和光电技术学院 26 190 8.0 12.0
3 王宏波 南京理工大学电子工程和光电技术学院 22 162 8.0 11.0
4 王容川 南京理工大学电子工程和光电技术学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (28)
共引文献  (14)
参考文献  (8)
节点文献
引证文献  (2)
同被引文献  (19)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(5)
  • 参考文献(2)
  • 二级参考文献(3)
2015(6)
  • 参考文献(1)
  • 二级参考文献(5)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(6)
  • 参考文献(4)
  • 二级参考文献(2)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高分辨距离像
卷积神经网络
特征提取
目标识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代雷达
月刊
1004-7859
32-1353/TN
大16开
南京3918信箱110分箱
28-288
1979
chi
出版文献量(篇)
5197
总下载数(次)
19
总被引数(次)
32760
论文1v1指导