基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
卷积神经网络的出现使得深度学习在视觉领域取得了巨大的成功,并逐渐延伸到合成孔径雷达(SAR)图像识别领域.然而,SAR图像样本量不足,难以支撑卷积神经网络的训练需求,并且SAR图像包含大量相干斑噪声及不确定性,网络结构的设计较为困难.所以,深度学习在SAR图像识别领域的应用受到阻碍.针对上述问题,文中提出一种基于数据扩维的SAR目标识别性能提升方法,通过对原始SAR图像进行相关预处理操作并把处理后图像与原始图像结合,从而将一维的原始数据扩充成多维数据来作为训练样本.该扩维方法不仅间接扩充了样本量来支撑网络训练,同时也在网络训练前加入了“主动学习”影响,所以无需针对SAR图像特性来构建复杂卷积网络,而采用成熟、简单的网络进行训练就可以达到理想的测试精度.最后,使用MSTAR数据对该方法进行了性能验证,实验结果显示了所提方法的有效性.
推荐文章
基于增强字典稀疏表示分类的SAR目标识别方法
合成孔径雷达
目标识别
增强字典
稀疏表示分类
基于峰值匹配的SAR图像飞机目标识别方法
合成孔径雷达
目标识别
方位角计算
峰值匹配
三维模型在SAR图像自动目标识别中的应用
三维模型
余弦傅里叶矩
组合分类器
SAR图像
目标识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于数据扩维的SAR目标识别性能提升技术
来源期刊 现代雷达 学科 工学
关键词 合成孔径雷达 目标识别 深度学习 数据扩维
年,卷(期) 2019,(5) 所属期刊栏目 信号处理
研究方向 页码范围 27-32,38
页数 7页 分类号 TN957.51
字数 4534字 语种 中文
DOI 10.16592/j.cnki.1004-7859.2019.05.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘振华 20 36 4.0 4.0
5 于俊朋 14 60 4.0 7.0
9 罗震宇 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (47)
共引文献  (16)
参考文献  (11)
节点文献
引证文献  (2)
同被引文献  (9)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(6)
  • 参考文献(3)
  • 二级参考文献(3)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
合成孔径雷达
目标识别
深度学习
数据扩维
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代雷达
月刊
1004-7859
32-1353/TN
大16开
南京3918信箱110分箱
28-288
1979
chi
出版文献量(篇)
5197
总下载数(次)
19
总被引数(次)
32760
论文1v1指导