基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
通过改进距离度量函数,在开集测试协议的基础上,对行人再辨识相关问题进行研究,使测量的行人特征满足以下两点:类间最小距离较大和类内最大距离较小.目前还没有存在的算法能够满足这个条件.文中采用Center Loss函数和分类损失函数相结合,使网络在分类损失与Center Loss函数的联合监督下,可以学习出更具判别性的行人特征.其中,行人特征分辨性问题分类损失函数能很好地解决,但常规的Center Loss函数只能使类内最大距离较小,但未能解决类间最小距离较大的问题.因此对Center Loss函数进行改进,在Center Loss函数中加入类间距离变量,使类间中心最小距离较大.最后通过几组再辨识数据集的实验证明了提出的网络与改进Center Loss函数的优越性.
推荐文章
基于辨识特征后融合的行人再识别
行人再识别
多特征融合
距离度量学习
距离融合
最小最大标准化
基于Focal Loss-2函数的中文短文本情感分类研究
情感分类
不平衡数据集
卷积神经网络
长短期记忆人工神经网络
FocalLoss-2
基于样本正态性重采样的改进KISSME行人再识别算法
行人再识别
度量学习算法
半监督学习
基于局部深度匹配的行人再识别
行人再识别
分块匹配
可变部件模型
深度神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进Center Loss函数的行人再辨识
来源期刊 计算机技术与发展 学科 工学
关键词 行人再辨识 深度学习 CenterLoss 分类损失函数
年,卷(期) 2019,(9) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 45-50
页数 6页 分类号 TP391
字数 4240字 语种 中文
DOI 10.3969/j.issn.1673-629X.2019.09.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张璐 82 362 10.0 17.0
2 刘阿建 太原理工大学信息与计算机学院 4 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (59)
共引文献  (443)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(9)
  • 参考文献(0)
  • 二级参考文献(9)
2016(13)
  • 参考文献(0)
  • 二级参考文献(13)
2017(5)
  • 参考文献(1)
  • 二级参考文献(4)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
行人再辨识
深度学习
CenterLoss
分类损失函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导