基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
卷积神经网络(Convolution Neural Network,CNN)用于人脸美丽预测,能学习到深层次的特征表达,但提取的是全局特征,忽略了人脸的局部信息,因此,泛化能力不强.为此,本文提出一种结合局部二值模式(Local binary pattern,LBP)和卷积神经网络的人脸美丽预测算法.首先,利用数据增强技术扩大数据库规模;其次,将LBP纹理图像和原始灰度图像进行通道融合;再采用1×1卷积操作进行通道特征图的线性组合,从而实现网络跨通道的信息整合,提升人脸美丽预测精度.基于大规模亚洲女性人脸美丽数据库(Large Scale Asian Fe-male Beauty Database,LSAFBD)的实验结果表明,该算法在分类和回归预测中均取得了较好效果,优于其他模型的人脸美丽预测算法;表明在卷积神经网络中加入纹理图像能有效提升人脸美丽预测精度.
推荐文章
基于卷积神经网络的人脸性别识别
人脸性别识别
卷积神经网络
稀疏连接
权值共享
基于选择性搜索和卷积神经网络的人脸检测
卷积神经网络
选择性搜索
人脸检测
Gabor核
基于卷积神经网络的人脸图像美感分类
卷积神经网络
LeNet-5
人脸识别
美感分类
图像处理
基于并行卷积神经网络的人脸关键点定位方法研究
人脸特征点定位
卷积神经网络
图像卷积
下图像采样
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合局部二值模式和卷积神经网络的人脸美丽预测
来源期刊 信号处理 学科 工学
关键词 人脸美丽预测 局部二值模式 卷积神经网络 LSAFBD人脸美丽数据库
年,卷(期) 2019,(1) 所属期刊栏目 短文与研究通讯
研究方向 页码范围 150-158
页数 9页 分类号 TP391.4
字数 5076字 语种 中文
DOI 10.16798/j.issn.1003-0530.2019.01.018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 甘俊英 五邑大学信息工程学院 82 871 14.0 26.0
2 项俐 五邑大学信息工程学院 5 2 1.0 1.0
3 曾军英 五邑大学信息工程学院 23 58 5.0 7.0
4 翟懿奎 五邑大学信息工程学院 25 110 7.0 9.0
5 谭海英 五邑大学信息工程学院 4 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (4)
参考文献  (18)
节点文献
引证文献  (1)
同被引文献  (1)
二级引证文献  (0)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(9)
  • 参考文献(6)
  • 二级参考文献(3)
2017(4)
  • 参考文献(3)
  • 二级参考文献(1)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人脸美丽预测
局部二值模式
卷积神经网络
LSAFBD人脸美丽数据库
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号处理
月刊
1003-0530
11-2406/TN
大16开
北京鼓楼西大街41号
18-143
1985
chi
出版文献量(篇)
5053
总下载数(次)
13
总被引数(次)
32728
论文1v1指导