基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为探索泵站管道混沌程度对短期预测精度的影响规律,确定适用于泵站管道混沌振动的短期预测方法,以某灌区泵站管道振动响应为例,采用Volterra级数和径向基(RBF)神经网络两种预测方法,建立了管道振动短期混沌预测模型.首先以典型混沌系统Lorenz x分量为算例验证两种方法在混沌预测领域的有效性;其次,选取受机组运行及流态突变影响的振动响应,分别建立混沌短期预测模型并分析不同工况下的预测精度;最终综合对比两种方法的预测精度.结果 表明,针对泵站管道振动响应,RBF神经网络和Volterra级数预测模型均有较好的预测效果;振动响应混沌程度越高,预测精度越低,且混沌程度越高可有效预测的时间序列越短;对于混沌程度较高的时间序列,Volterra级数预测有相对更低的平均相对误差、均方根误差,预测误差相对RBF神经网络更小,具有更高的预测精度.
推荐文章
某泵站输油管道振动测试分析
输油管道
振动测试
减振
泵站输油管道振动原因及减振方法研究
太阳升泵站
输油管道
振动
减振
基于混沌模糊神经网络方法的短期负荷预测
短期负荷
混沌算法
模糊神经网络
预测模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 泵站管道混沌振动短期预测分析
来源期刊 水电能源科学 学科 工学
关键词 泵站管道 振动响应 短期混沌预测 Volterra级数 RBF神经网络
年,卷(期) 2019,(10) 所属期刊栏目 水利水电工程
研究方向 页码范围 80-84
页数 5页 分类号 TV31
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (49)
共引文献  (97)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(7)
  • 参考文献(0)
  • 二级参考文献(7)
2016(8)
  • 参考文献(0)
  • 二级参考文献(8)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
泵站管道
振动响应
短期混沌预测
Volterra级数
RBF神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
水电能源科学
月刊
1000-7709
42-1231/TK
大16开
武汉市洪山区珞喻路1037号华中科技大学内
38-111
1983
chi
出版文献量(篇)
9307
总下载数(次)
26
总被引数(次)
55104
论文1v1指导