摘要:
以氧化镧催化剂在甲烷氧化偶联(OCM)反应中的结构敏感性实验研究为基础,采用周期性密度泛函理论(DFT)计算研究氧化镧(001),(110)和(100)3个晶面及OCM反应物分子甲烷和氧在其上的吸附、 活化和解离.结果表明,氧化镧(001),(110)和(100)3个晶面的表面能大小顺序为(110)>(100)>(001),3个晶面的价带和导带间隙大小顺序为(110)<(100)<(001),即(001)是3个晶面中最稳定的晶面,而(110)则是最活泼的晶面.甲烷分子在氧化镧(001),(110)和(100)晶面上的吸附很弱(~0.03 eV),H—CH3解离吸附能分别为2.16,0.68和0.90 eV,解离反应的难易性与晶面的活性顺序一致;而氧分子在氧化镧(001),(110)和(100)晶面上的分子吸附能分别为-0.04,-0.31和-0.12 eV,解离吸附能分别为1.22,0.53和1.52 eV,即氧化镧晶面结构对氧分子吸附具有明显的影响,其中,(001)晶面上吸附最弱,(110)晶面上吸附最强,以致O—O在(110)晶面上可以较低能垒(0.53 eV)解离,形成亲电的过氧物种.由于氧分子在氧化镧表面的吸附较甲烷分子强,因此,氧化镧在OCM反应中结构敏感性应与氧分子的吸附和活化密切相关.甲烷和氧分子在氧化镧表面上活化的本质源自于电子自表面流向甲烷和氧分子的反键轨道,且表面结构的改变会导致不同强度的电子流动驱动.