基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
光流场是目标检测,无人机定位等众多计算机视觉任务的重要基础.本文针对非刚性大位移运动等困难运动类型图像序列光流计算的准确性与鲁棒性问题,提出一种基于非刚性稠密匹配的TV-L1(Total Variational with L1 norm,TV-L1)大位移光流计算方法.首先,使用非刚性稠密块匹配计算图像序列初始最近邻域场,其次根据图像相邻块区域的相似性消除初始最近邻域场中的非一致性区域以得到准确的图像最近邻域场.然后,在图像金字塔分层计算框架下,将图像最近邻域场引入基于非局部约束的TV-L1光流估计模型,通过Quadratic Pseudo-Boolean Optimization(QPBO)融合算法在金字塔分层图像光流计算时对TV-L1模型光流估计进行大位移运动补偿.最后,采用标准测试图像序列对本文方法和当前代表性的变分方法LDOF(Large Displacement Optical Flow,LDOF)、Classic+NL、NNF(Nearest Neighbor Fields,NNF)以及深度学习方法FlowNet2.0进行对比分析.实验结果表明,本文方法能有效提高非刚性运动、大位移运动以及运动遮挡等困难运动类型光流估计的精度与鲁棒性.
推荐文章
基于稠密光流算法的运动目标检测的Python实现
运动目标检测
稠密光流算法
光流矩阵计算
光流信息转化
边缘检测
系统设计
高斯粒子滤波的局部光流运动匹配跟踪算法
目标跟踪
高斯粒子滤波
运动匹配
局部光流约束
一种基于两步运动估计的系列图像匹配算法
图像匹配
运动估计
简化仿射变换
光流法
匹配残差
基于光流法和颜色概率分布的特征点匹配
特征点匹配
光流法
颜色概率分布
空间映射
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 非刚性稠密匹配大位移运动光流估计
来源期刊 电子学报 学科 工学
关键词 光流场 目标检测 无人机 计算机视觉 非刚性块匹配 大位移运动 最近邻域场 深度学习
年,卷(期) 2019,(6) 所属期刊栏目 学术论文
研究方向 页码范围 1316-1323
页数 8页 分类号 TP391
字数 5873字 语种 中文
DOI 10.3969/j.issn.0372-2112.2019.06.019
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (16)
共引文献  (8)
参考文献  (6)
节点文献
引证文献  (1)
同被引文献  (3)
二级引证文献  (0)
1981(2)
  • 参考文献(1)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
光流场
目标检测
无人机
计算机视觉
非刚性块匹配
大位移运动
最近邻域场
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子学报
月刊
0372-2112
11-2087/TN
大16开
北京165信箱
2-891
1962
chi
出版文献量(篇)
11181
总下载数(次)
11
总被引数(次)
206555
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导