作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
介绍了一种基于卷积神经网络的车辆识别方法.该方法首先对车道线进行边缘检测,采用车道线模型进行匹配,从而确定道路感兴趣区域.然后采集道路视频,对其中的车辆目标进行标注,制作车辆数据集,再设计一种卷积神经网络,利用车辆数据集训练检测器,使检测器适应于车辆二分类识别的任务.最后在道路感兴趣区域中检测车辆.相较于传统的车辆识别方法,该方法具有较好的准确性与鲁棒性,在复杂行驶环境下的识别效果令人满意.
推荐文章
一种基于卷积神经网络的结构损伤检测方法
卷积神经网络
损伤识别
加速度
抗噪性
一种基于深度卷积神经网络的车辆颜色识别方法
深度学习
卷积神经网络
颜色识别
智能交通
一种基于卷积神经网络的疲劳驾驶检测方法
疲劳驾驶检测
人脸检测
人脸特征点
卷积神经网络
基于多任务卷积神经网络的轨道车辆螺栓异常检测方法
多任务卷积神经网络
螺栓异常
图像对比
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于卷积神经网络的车辆检测方法
来源期刊 农业装备与车辆工程 学科 工学
关键词 卷积神经网络 车辆识别 鲁棒性
年,卷(期) 2019,(2) 所属期刊栏目
研究方向 页码范围 44-48
页数 5页 分类号 TP391
字数 4265字 语种 中文
DOI 10.3969/j.issn.1673-3142.2019.02.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 叶运生 安徽省合肥市合肥工业大学汽车与交通工程学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (14)
参考文献  (6)
节点文献
引证文献  (1)
同被引文献  (11)
二级引证文献  (0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
车辆识别
鲁棒性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
农业装备与车辆工程
月刊
1673-3142
37-1433/TH
大16开
济南市桑园路19号
1963
chi
出版文献量(篇)
5192
总下载数(次)
16
总被引数(次)
13327
论文1v1指导