原文服务方: 计算机应用研究       
摘要:
传统的文本分类方法大多数使用单一的分类器,而不同的分类器对分类任务的侧重点不同,就使得单一分类方法有一定的局限性,同时每个特征提取方法对特征词的考虑角度不同.针对以上问题,提出了多类型分类器融合的文本分类方法.该模型使用了word2vec、主成分分析、潜在语义索引以及TFIDF特征提取方法作为多类型分类器融合的特征提取方法.在多类型分类器加权投票方法中忽略了类别信息的问题,提出了类别加权的分类器权重计算方法.通过实验结果表明,多类型分类器融合方法在二元语料库、多元语料库以及特定语料库上都取得了很好的性能,类别加权的分类器权重计算方法比多类型分类器融合方法在分类性能方面提高了1.19%.
推荐文章
结合旋转森林和AdaBoost分类器的多标签文本分类方法
多标签文本分类
文本—术语相关性
旋转森林
特征变换
AdaBoost分类器
文本分类技术研究
文本分类
文本模型
数据挖掘
文本分类技术研究
文本挖掘
文本分类
特征表示
特征抽取
模型评估
基于大数据挖掘技术的文本分类研究
大规模文本数据
高维特征
大数据挖掘技术
文本分类器
分类精度
分类时间
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多类型分类器融合的文本分类方法研究
来源期刊 计算机应用研究 学科
关键词 文本分类 分类器融合 主成分分析 潜在语义索引
年,卷(期) 2019,(3) 所属期刊栏目 算法研究探讨
研究方向 页码范围 752-755
页数 4页 分类号 TP301.6
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2017.09.0908
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陆光 东北林业大学信息与计算机工程学院 19 40 3.0 5.0
2 李惠富 东北林业大学信息与计算机工程学院 2 4 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (86)
共引文献  (122)
参考文献  (12)
节点文献
引证文献  (2)
同被引文献  (7)
二级引证文献  (0)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(11)
  • 参考文献(0)
  • 二级参考文献(11)
2013(10)
  • 参考文献(0)
  • 二级参考文献(10)
2014(9)
  • 参考文献(2)
  • 二级参考文献(7)
2015(7)
  • 参考文献(0)
  • 二级参考文献(7)
2016(6)
  • 参考文献(4)
  • 二级参考文献(2)
2017(5)
  • 参考文献(4)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
文本分类
分类器融合
主成分分析
潜在语义索引
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
论文1v1指导