基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
铁轨探伤技术的可靠性关系到铁路运行的安全性.分析BP神经网络、卷积神经网络算法在图片识别中的优势,提出一种结合BP、卷积网络的新算法应用于铁轨伤损检测.改进算法利用卷积神经网络对铁轨样本进行特征提取,仅一次前向运算获得低维度铁轨图,再由BP神经网络对低维度铁轨图特征进行分类训练与测试.实验结果表明,改进算法在已训练好的模型测试中得到较好的误差收敛曲线与较高的测试精度,与BP算法、卷积算法相比,该算法训练时间更少,对铁轨伤损图片识别效果更好,在铁轨伤损检测方面有较好的应用前景.
推荐文章
基于多尺度卷积神经网络模型的手势图像识别
卷积神经网络
卷积核
深度学习
特征提取
手势识别
二值化
基于卷积神经网络的植物图像识别APP开发——"植鉴"
深度学习
TensorFlow框架
Inception-v3网络模型
'植鉴'APP
利用卷积神经网络改进迭代深度学习算法的图像识别方法研究
深度学习
卷积神经网络(CNN)
自适应
图像识别
层次化迭代
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进卷积神经网络的铁轨伤损图像识别
来源期刊 测控技术 学科 工学
关键词 铁轨探伤 特征提取 卷积神经网络 BP神经网络
年,卷(期) 2019,(6) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 19-22,27
页数 5页 分类号 TP391
字数 3754字 语种 中文
DOI 10.19708/j.ckjs.2019.06.005
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张亚 安徽理工大学电气与信息工程学院 24 79 5.0 8.0
2 江白华 安徽理工大学电气与信息工程学院 2 3 1.0 1.0
3 曾文文 安徽理工大学电气与信息工程学院 2 7 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (101)
共引文献  (442)
参考文献  (10)
节点文献
引证文献  (3)
同被引文献  (17)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(12)
  • 参考文献(0)
  • 二级参考文献(12)
2013(15)
  • 参考文献(0)
  • 二级参考文献(15)
2014(9)
  • 参考文献(0)
  • 二级参考文献(9)
2015(10)
  • 参考文献(2)
  • 二级参考文献(8)
2016(8)
  • 参考文献(5)
  • 二级参考文献(3)
2017(5)
  • 参考文献(2)
  • 二级参考文献(3)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
铁轨探伤
特征提取
卷积神经网络
BP神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测控技术
月刊
1000-8829
11-1764/TB
大16开
北京2351信箱《测控技术》杂志社
82-533
1980
chi
出版文献量(篇)
8430
总下载数(次)
24
相关基金
安徽省自然科学基金
英文译名:Anhui Provincial Natural Science Foundation
官方网址:http://www.ahinfo.gov.cn/zrkxjj/index.htm
项目类型:安徽省优秀青年科技基金
学科类型:
论文1v1指导