基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对桥梁技术状态需要人为主观确定各因素的影响权重问题,基于LIBSVM支持向量机构建了桥梁各部件状态特征因素量和桥梁状态评估值非线性映射模型,通过交叉验证设计LIBSVM寻找最优参数的方法对88座桥梁样本数据进行学习、17座桥梁数据进行测试,同时对比了神经网络模式识别分类方法.分析和对比结果表明:采用LIBSVM方法对桥梁技术状况进行分类预测准确率达100%,其理论完善、计算简便和泛化能力均优于神经网络模式识别,说明LIBSVM方法可以较好地用于确定桥梁技术状况分类.
推荐文章
基于支持向量机的流量分类方法
流量分类
支持向量机
流量识别
支持向量机方法在膨胀土分类中的应用
膨胀土
支持向量机
分类
用于分类的支持向量机
支持向量机
机器学习
分类
岩爆分类的支持向量机方法
岩爆
分类
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于LIBSVM支持向量机在梁式桥梁技术状况分类上的应用
来源期刊 公路 学科 交通运输
关键词 LIBSVM 支持向量机 桥梁技术状况分类 模式识别
年,卷(期) 2019,(5) 所属期刊栏目 桥梁
研究方向 页码范围 135-138
页数 4页 分类号 U445.7
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (18)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(3)
  • 参考文献(2)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
LIBSVM
支持向量机
桥梁技术状况分类
模式识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
公路
月刊
0451-0712
11-1668/U
大16开
北京市东城区东四前炒面胡同33号D座
2-81
1956
chi
出版文献量(篇)
13800
总下载数(次)
28
论文1v1指导