基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
制冷设备是高可靠性和高安全性的复杂系统,多年的设备运行产生了大量的时间序列数据.为了解决制冷设备运行状态难以准确预测等问题,提出使用改进型LSTM(Enhanced-LSTM)对制冷设备的状态进行预测.通过使用均值滤波的方法对原始数据进行预处理,填补空缺值,处理异常值.对特征进行相关性分析,选择与制冷设备状态关联系数较大的特征:PUE、冷源功率、冷冻二次泵作为研究对象,实现基于E-LSTM的网络结构的设计、训练和预测,最后对预测结果进行比较分析.通过与线性回归、SVR、GRU、RNN、LSTM等模型的对比实验,表明了所改进的E-LSTM神经网络对制冷设备的运行状态有更高的预测精度.对制冷设备里的重要参数进行预测,在理论研究方面为制冷设备检修风险评估分析提供科学、真实、有效的数据,保证数据中心正常工作.
推荐文章
基于LSTM循环神经网络的电池SOC预测方法
锂离子电池
荷电状态(SOC)
电动汽车
长短期记忆(LSTM)
循环神经网络
基于TensorFlow的LSTM循环神经网络短期电力负荷预测
Tensor Flow
LSTM
深度学习
短期电力负荷预测
基于LSTM时间递归神经网络的短期电力负荷预测
短期电力负荷预测
LSTM
时间递归
神经网络
基于LSTM循环神经网络的核电设备状态预测
核电设备
时间序列数据
循环神经网络
状态预测
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于E-LSTM循环神经网络的制冷设备状态预测
来源期刊 测控技术 学科 工学
关键词 预测 深度学习 LSTM 制冷设备 智能化
年,卷(期) 2019,(12) 所属期刊栏目 先进算法与人工智能
研究方向 页码范围 40-45
页数 6页 分类号 TP18
字数 3942字 语种 中文
DOI 10.19708/j.ckjs.2019.12.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 贾克斌 北京工业大学信息学部 119 1096 17.0 29.0
4 刘鹏宇 北京工业大学信息学部 18 98 4.0 9.0
13 徐晨蕊 北京工业大学信息学部 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (54)
共引文献  (20)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(10)
  • 参考文献(2)
  • 二级参考文献(8)
2014(12)
  • 参考文献(0)
  • 二级参考文献(12)
2015(5)
  • 参考文献(0)
  • 二级参考文献(5)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
预测
深度学习
LSTM
制冷设备
智能化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测控技术
月刊
1000-8829
11-1764/TB
大16开
北京2351信箱《测控技术》杂志社
82-533
1980
chi
出版文献量(篇)
8430
总下载数(次)
24
总被引数(次)
55628
论文1v1指导