针对无人机航迹规划问题,提出了一种融合简化稀疏A*算法与模拟退火算法(Fusion of Simplified Sparse A*Algorithm and Simulated Annealing algorithm,简称FSSA-SA)的航迹规划方法.首先,在对威胁环境进行建模之后,将模拟退火思想与具体航迹规划问题求解相结合,给出了模拟退火算法求解航迹规划问题的具体设计与实现方法.其次,利用简化的稀疏A*算法在规划起止点之间进行一次往返搜索,并将所得结果中较优的一条航迹作为模拟退火算法的初始解,实现了两种算法的融合.然后,当退火进行至低温区时,通过对位置存在冗余的航迹节点的剔除,进一步改善了算法的求解质量.最后为了验证算法的优越性,将本文算法与稀疏A*算法、模拟退火算法进行了仿真对比试验.试验结果表明,本文提出的FSSA-SA算法相比于上述两种算法,具有较少的规划耗时;相比于稀疏A*算法,在所得航迹的综合代价相差不大的情况下,内存占用量少了两个量级;相比与模拟退火算法,在相同的退火条件下,其规划所得航迹的综合代价平均减少了35% 左右.