原文服务方: 现代电子技术       
摘要:
随着人工智能技术的不断发展,利用深度学习进行车辆识别已经成为智能交通领域的热点.以更快速区域卷积神经网络(Faster R-CNN)模型为基础,利用BIT-Vehicle数据集定义车辆视觉任务,利用改进的困难样本算法加强对图像中远小目标车辆的特征提取,并改进NMS算法的置信度函数,动态调整置信度区间,对实际场景中的车辆图像进行测试.该方法可输入多尺度图像、能自主提取车辆特征,提高模型对小目标的判别能力,减少漏检情况,提升检测精度,加速模型收敛,鲁棒性较强.
推荐文章
一种改进的Faster R-CNN对小尺度车辆检测研究
FasterR-CNN
小尺度车辆检测
全卷积网络
区域建议网络
锚选择
平衡锚数量
应用GAN和Faster R-CNN的色织物缺陷识别
色织物
图像扩充
生成对抗网络
FasterR-CNN
缺陷识别
基于DRN和Faster R-CNN融合模型的行为识别算法
行为识别
扩张残差网络
Faster R-CNN
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进的Faster R-CNN在车辆识别中的应用
来源期刊 现代电子技术 学科
关键词 车辆识别 智能交通 改进的FasterR-CNN 特征提取 置信度函数改进 实验分析
年,卷(期) 2019,(23) 所属期刊栏目 信号分析与图像处理
研究方向 页码范围 48-52
页数 5页 分类号 TN911.73-34|TP391
字数 语种 中文
DOI 10.16652/j.issn.1004-373x.2019.23.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王宝珠 河北工业大学电子信息工程学院 73 378 10.0 16.0
2 郭志涛 河北工业大学电子信息工程学院 47 339 9.0 16.0
3 雷瑶 河北工业大学电子信息工程学院 3 4 1.0 2.0
4 史龙云 河北工业大学电子信息工程学院 3 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (16)
参考文献  (7)
节点文献
引证文献  (1)
同被引文献  (2)
二级引证文献  (0)
1678(1)
  • 参考文献(0)
  • 二级参考文献(1)
1776(1)
  • 参考文献(0)
  • 二级参考文献(1)
1857(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(9)
  • 参考文献(4)
  • 二级参考文献(5)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
车辆识别
智能交通
改进的FasterR-CNN
特征提取
置信度函数改进
实验分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
总被引数(次)
135074
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导