原文服务方: 现代电子技术       
摘要:
提出一种利用卷积神经网络对胸部X光影像数据进行分析,实现对肺炎这一常见症状进行检测的系统.该方案首先进行图像预处理,然后采用VGG卷积神经网络和改进VGG卷积神经网络分别实现对胸部X光影像的特征提取,得到两种网络对肺炎的检测准确率,最终测试结果显示,改进VGG卷积神经网络在对肺炎检测上具备比VGG网络更好的识别效果,同时,改进VGG网络在标定好的数据集进行训练时能够更快的收敛.通过在公开数据集上进行测试表明,改进VGG卷积神经网络得到了98.5%的准确率,相比于VGG网络提升了2%以上的识别准确率,证明该方案在肺炎识别上具有可行性.
推荐文章
基于卷积神经网络的行人目标检测系统设计
卷积神经网络
行人目标
检测系统
CNN框架
目标传感器
训练文件
访问接口
复用加速结构
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
基于改进卷积神经网络的肺炎影像判别
肺炎判别
CT影像
深度学习
细微特征差异
基于卷积神经网络的乳腺疾病检测算法
卷积神经网络
特征融合
空间金字塔池化
尺度无关
乳腺疾病检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的肺炎检测系统
来源期刊 现代电子技术 学科
关键词 卷积神经网络 胸部X光影像 肺炎诊断 图像预处理 VGG 特征提取
年,卷(期) 2019,(23) 所属期刊栏目 信号分析与图像处理
研究方向 页码范围 35-39
页数 5页 分类号 TN911.73-34
字数 语种 中文
DOI 10.16652/j.issn.1004-373x.2019.23.008
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (80)
共引文献  (92)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1951(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(15)
  • 参考文献(1)
  • 二级参考文献(14)
2016(20)
  • 参考文献(0)
  • 二级参考文献(20)
2017(7)
  • 参考文献(2)
  • 二级参考文献(5)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
胸部X光影像
肺炎诊断
图像预处理
VGG
特征提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导