基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高BP神经网络模型的预测精度,提出了一种基于KNN算法及GA算法优化的BP神经网络的水位预测方法(KG-BP),即通过KNN邻近算法从全样本数据中剔除与待测点相关度较低的样本集,并允许保留K个“优质”训练数据集;将筛选出的“优质”训练数据集代入GA算法中实现初始权阈值的优化;再将“优质”的样本和初始权阈值代入BP模型中进行训练.将该预测方法应用于东山站水位实际预测中,并与BP模型、GA-BP模型的预测结果进行对比分析,验证了KG-BP模型具有较高的预测精度.
推荐文章
秦淮河流域东山站洪水位预报模型研究
洪水预报
BP人工神经网络
线性动态系统
一维水动力模型
秦淮河地铁桥物理模型试验研究
物理模型
桥墩
壅水
流速
水面线
秦淮河流域东山站水位预报研究
面雨量
降雨特性
BP神经网络模型
水位预报
东山站
基于GIS技术的秦淮河流域水系分维研究
地理信息系统
秦淮河流域
水系分维
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于KG-BP神经网络在秦淮河洪水水位预测中的应用
来源期刊 水电能源科学 学科 工学
关键词 KNN算法 GA算法 BP神经网络 水位 预测
年,卷(期) 2019,(2) 所属期刊栏目 水情测报与优化调度
研究方向 页码范围 74-77,81
页数 5页 分类号 TV124
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (34)
共引文献  (177)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1954(1)
  • 参考文献(0)
  • 二级参考文献(1)
1956(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
KNN算法
GA算法
BP神经网络
水位
预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
水电能源科学
月刊
1000-7709
42-1231/TK
大16开
武汉市洪山区珞喻路1037号华中科技大学内
38-111
1983
chi
出版文献量(篇)
9307
总下载数(次)
26
总被引数(次)
55104
论文1v1指导