原文服务方: 计算机测量与控制       
摘要:
为了提高长时交通流的预测精度,提出一种改进的人工蜂群优化BP神经网络分时段预测交通流的方法;利用Tent混沌映射采蜜蜂放弃的新解,实现具有混沌搜索策略的人工蜂群算法,然后优化BP神经网络的权值和阈值,最终训练BP神经网络以求得最优值;利用该预测方法对合肥市黄天路全天的交通流分时段预测,实现了对长时交通流的准确预测,与传统的人工蜂群优化BP神经网络预测对比,能有效改善预测精度,降低预测误差.
推荐文章
改进人工蜂群算法优化RBF神经网络的短时交通流预测
交通流预测
RBF神经网络
BP神经网络
小波神经网络
人工蜂群算法
基于改进人工蜂群算法优化小波神经网络的短时交通流预测
短时交通流量
小波神经网络
人工蜂群算法
遗传算法
差分进化算法
基于混沌粒子群算法的神经网络短时交通流预测
交通流量
预测
混沌粒子群
神经网络
基于混沌机制的人工蜂群算法优化的支持向量机分类器
人工蜂群算法
支持向量机
参数优化
混沌机制
锦标赛选择策略
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于混沌搜索的人工蜂群优化神经网络交通流预测方法
来源期刊 计算机测量与控制 学科
关键词 交通流预测 BP神经网络 人工蜂群算法 Tent混沌 分时段
年,卷(期) 2019,(3) 所属期刊栏目 测试与故障诊断
研究方向 页码范围 44-48,54
页数 6页 分类号 U121
字数 语种 中文
DOI 10.16526/j.cnki.11-4762/tp.2019.03.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李雪 长安大学电子与控制工程学院 45 141 7.0 10.0
2 李洋 长安大学电子与控制工程学院 21 58 4.0 7.0
3 郑晅 长安大学电子与控制工程学院 17 64 4.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (97)
共引文献  (242)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(6)
  • 参考文献(1)
  • 二级参考文献(5)
2006(8)
  • 参考文献(0)
  • 二级参考文献(8)
2007(10)
  • 参考文献(0)
  • 二级参考文献(10)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2010(11)
  • 参考文献(2)
  • 二级参考文献(9)
2011(9)
  • 参考文献(0)
  • 二级参考文献(9)
2012(9)
  • 参考文献(1)
  • 二级参考文献(8)
2013(11)
  • 参考文献(1)
  • 二级参考文献(10)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(6)
  • 参考文献(1)
  • 二级参考文献(5)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(5)
  • 参考文献(4)
  • 二级参考文献(1)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
交通流预测
BP神经网络
人工蜂群算法
Tent混沌
分时段
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导