基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了改善传统风电功率预测方法中误差较大且稳定性较差的问题,引入量子粒子群(QPSO)优化算法、自适应早熟判定准则及混合扰动算子,构建了自适应扰动量子粒子群(ADQPSO)优化算法,通过ADQPSO算法对核极限学习机(KELM)模型进行优化,建立了自适应扰动量子粒子群优化的核极限学习机(ADQPSO-KELM)风电功率短期预测模型,并利用内蒙古高尔真风电场采集的风电功率时间序列数据为试验样本进行48 h预测分析.结果 表明,ADQPSO-KELM风电功率短期预测模型与其他基于KELM优化的风电预测模型及传统风电预测模型相比,其预测的误差更小、准确度更高,且预测稳定性显著增强.
推荐文章
基于CS-SVR模型的短期风电功率预测
功率预测
布谷鸟搜索算法
支持向量回归机
参数寻优
异常数据剔除
基于风速融合和NARX神经网络的短期风电功率预测
短期风电功率预测
预测模型
NARX神经网络
风速融合
数据融合
数据处理
基于ARMA的风电功率预测
风力发电
ARMA
风电功率预测
风电机组
基于动态集成LSSVR的超短期风电功率预测
超短期风电功率预测
最小二乘支持向量回归
动态集成
动态时间弯曲距离
数值天气预报
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于ADQPSO-KELM风电功率短期预测模型的研究
来源期刊 水电能源科学 学科 工学
关键词 功率预测 核极限学习机 早熟判定准则 自适应扰动量子粒子群
年,卷(期) 2019,(12) 所属期刊栏目 能源
研究方向 页码范围 190-193,208
页数 5页 分类号 TM715
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 付立思 沈阳农业大学信息与电气工程学院 42 355 11.0 18.0
2 屈伯阳 沈阳农业大学信息与电气工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
功率预测
核极限学习机
早熟判定准则
自适应扰动量子粒子群
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
水电能源科学
月刊
1000-7709
42-1231/TK
大16开
武汉市洪山区珞喻路1037号华中科技大学内
38-111
1983
chi
出版文献量(篇)
9307
总下载数(次)
26
总被引数(次)
55104
论文1v1指导