基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了改善传统时间序列方法无法在预测模型中添加相关变量等缺点,并提高股指预测精度,运用LSTM神经网络等深度学习方法对我国上证指数及沪深300指数进行预测分析,并将预测结果与RNN、CNN、ARMA等模型进行比较,然后在模型中加入百度指数测试其对预测精度的影响,最后检验LSTM模型对训练步长的敏感性.研究结果表明,LSTM能够实现对股指的精准预测,其预测评价指标MAE、MAPE、RMSE分别为0.008、0.025、0.011,预测误差低于其它模型,加入百度指数可进一步提升其预测能力,但改变LSTM模型训练步长对结果影响不大.因此,LSTM模型在金融经济预测领域有较高的应用价值.
推荐文章
利用温度信息及深度学习方法实现高精度电力负荷预测
负荷预测
深度学习
LSTM
温度信息
Tensor-flow
激活函数
基于核学习方法的短时交通流量预测
核学习方法
短时交通流
预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于LSTM等深度学习方法的股指预测研究
来源期刊 软件导刊 学科 工学
关键词 深度学习 LSTM 股指预测 百度指数
年,卷(期) 2019,(9) 所属期刊栏目 人工智能
研究方向 页码范围 17-21
页数 5页 分类号 TP306
字数 4352字 语种 中文
DOI 10.11907/rjdk.191155
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李佳 上海理工大学管理学院 35 121 6.0 10.0
2 陈冬兰 上海理工大学管理学院 5 5 1.0 2.0
3 黄之豪 上海理工大学管理学院 5 10 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (91)
共引文献  (75)
参考文献  (20)
节点文献
引证文献  (4)
同被引文献  (5)
二级引证文献  (0)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(4)
  • 参考文献(0)
  • 二级参考文献(4)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(4)
  • 参考文献(1)
  • 二级参考文献(3)
2002(6)
  • 参考文献(1)
  • 二级参考文献(5)
2003(8)
  • 参考文献(0)
  • 二级参考文献(8)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(9)
  • 参考文献(2)
  • 二级参考文献(7)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(11)
  • 参考文献(2)
  • 二级参考文献(9)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(6)
  • 参考文献(1)
  • 二级参考文献(5)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(9)
  • 参考文献(4)
  • 二级参考文献(5)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(3)
  • 参考文献(2)
  • 二级参考文献(1)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
LSTM
股指预测
百度指数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件导刊
月刊
1672-7800
42-1671/TP
16开
湖北省武汉市
38-431
2002
chi
出版文献量(篇)
9809
总下载数(次)
57
总被引数(次)
30383
论文1v1指导