原文服务方: 计算机测量与控制       
摘要:
将强跟踪思想引入容积卡尔曼滤波(cubature Kalman filter,CKF),建立强跟踪CKF能有效克服CKF在模型不确定、状态突变等情况下,滤波性能下降的问题;通过分析现有多渐消因子计算方法,发现它们均只利用了协方差矩阵的对角线元素,并没有考虑各个状态之间的相关性,不能充分发挥多渐消因子的优势;为此,提出渐消因子矩阵,基于正交原理推导渐消因子矩阵的求解方法,提出多渐消因子强跟踪CKF算法;多渐消因子强跟踪CKF算法突破了传统多渐消因子为向量的限制,也不再要求渐消因子取值要大于1;仿真验证了算法具有更好的滤波精度何鲁棒性,能更好的满足工程应用的要求.
推荐文章
多渐消因子平方根容积卡尔曼滤波算法
平方根容积卡尔曼滤波
强跟踪滤波
多渐消因子
假设检验
带渐消因子的容积卡尔曼滤波算法
非线性系统
强跟踪滤波
容积卡尔曼滤波
卡尔曼滤波
如何采用渐消卡尔曼滤波器防止捷联惯导系统滤波发散
卡尔曼滤波
自适应
捷联惯导系统
滤波发散
多传感器自适应容积卡尔曼滤波融合算法
容积卡尔曼滤波
自适应
噪声统计估计器
修正函数
组合滤波
数据融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种新的多渐消因子容积卡尔曼滤波
来源期刊 计算机测量与控制 学科
关键词 容积卡尔曼滤波 相关性 多渐消因子 鲁棒性
年,卷(期) 2019,(2) 所属期刊栏目 设计与应用
研究方向 页码范围 241-245
页数 5页 分类号 TP391
字数 语种 中文
DOI 10.16526/j.cnki.11-4762/tp.2019.02.053
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张安 西北工业大学航空学院 251 2073 20.0 31.0
2 鲍水达 西北工业大学电子信息学院 3 6 2.0 2.0
3 高飞 西北工业大学航空学院 7 40 2.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (58)
共引文献  (89)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(6)
  • 参考文献(1)
  • 二级参考文献(5)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(10)
  • 参考文献(1)
  • 二级参考文献(9)
2011(10)
  • 参考文献(0)
  • 二级参考文献(10)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
容积卡尔曼滤波
相关性
多渐消因子
鲁棒性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导