基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对电力负荷序列不稳定性、随机性等特点引起的电力负荷预测精度下降等问题,提出MEEMD加窗改进方法和GRNN组合的短期电力负荷预测模型.利用GRNN神经网络延拓方法对原始信号两端数据进行延拓,用余弦窗函数对延拓数据加窗处理后再进行MEEMD分解,用神经网络对各分量趋势进行预测,叠加各分量的预测结果得到负荷序列的最终预测结果.实验结果表明,MEEMD加窗改进分解预测的平均绝对误差、平均绝对值百分比误差和均方根误差分别为73.9268、0.8180%和82.9301.基于MEEMD加窗改进方法和GRNN组合的电力负荷预测不仅能抑制端点效应,而且能解决模态混叠和伪分解问题,提高了短期电力负荷的预测精度.
推荐文章
电力负荷预测的方法研究
电力负荷
预测方法
应用
基于SARIMA-GRNN-SVM的短期商业电力负荷组合预测方法
商业电力负荷
短期预测
季节自回归差分移动平均模型
广义回归神经网络
支持向量机
短期电力负荷预测方法研究
电力系统
短期电力负荷
灰色预测方法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于MEEMD加窗改进方法与GRNN组合的电力负荷预测
来源期刊 软件导刊 学科 工学
关键词 电力负荷预测 GRNN 端点效应 模态混叠 余弦窗函数
年,卷(期) 2019,(12) 所属期刊栏目 人工智能
研究方向 页码范围 44-50
页数 7页 分类号 TP306
字数 4096字 语种 中文
DOI 10.11907/rjdk.191207
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 毕贵红 昆明理工大学电力工程学院 76 578 13.0 20.0
2 高晗 昆明理工大学电力工程学院 2 0 0.0 0.0
3 段艳涛 昆明理工大学电力工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (106)
共引文献  (329)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1927(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(7)
  • 参考文献(1)
  • 二级参考文献(6)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(12)
  • 参考文献(0)
  • 二级参考文献(12)
2009(13)
  • 参考文献(2)
  • 二级参考文献(11)
2010(16)
  • 参考文献(1)
  • 二级参考文献(15)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(11)
  • 参考文献(1)
  • 二级参考文献(10)
2013(10)
  • 参考文献(3)
  • 二级参考文献(7)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
电力负荷预测
GRNN
端点效应
模态混叠
余弦窗函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件导刊
月刊
1672-7800
42-1671/TP
16开
湖北省武汉市
38-431
2002
chi
出版文献量(篇)
9809
总下载数(次)
57
总被引数(次)
30383
论文1v1指导