原文服务方: 计算机测量与控制       
摘要:
为了提高高纬度地区云雪卫星图像的识别准确率,提出了密集连接空洞卷积神经网络与空洞卷积相结合的方法进行云雪卫星图像识别研究;该方法首先采用常规卷积层对图像进行处理得到特征图,然后采用多个密集块和过渡层对特征图进行处理;其中,密集块中采用跨层连接的方式实现了网络中所用层的特征传递,使得大量云雪特征得到重用,同时减轻了训练过程中的梯度消失问题;密集块中的卷积核采用空洞卷积,在减少参数量的同时扩大局部感受野,对云雪的光谱信息进行特征提取;最后,该方法采用平均全局池化层与全连接层得到云雪图像的预测结果;实验结果表明,与其他机器学习方法相比,该方法能够提高卫星云雪图像的识别准确率,具有良好的泛化能力.
推荐文章
基于卷积神经网络的植物图像分类方法研究
卷积神经网络
图像特征
图像分类
全卷积网络
植物图像
数据集
基于卷积神经网络的军事图像分类
军事图像分类
深度学习
卷积神经网络
主成分分析白化
随机池化
基于卷积神经网络的人脸图像美感分类
卷积神经网络
LeNet-5
人脸识别
美感分类
图像处理
基于多层卷积神经网络的SAR图像分类方法
雷达目标识别
卷积神经网络
深度学习
MSTAR数据
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于密集连接空洞卷积神经网络的青藏地区云雪图像分类
来源期刊 计算机测量与控制 学科
关键词 云雪图像识别 特征提取 跨层连接 空洞卷积
年,卷(期) 2019,(9) 所属期刊栏目 设计与应用
研究方向 页码范围 169-173
页数 5页 分类号 TP183
字数 语种 中文
DOI 10.16526/j.cnki.11-4762/tp.2019.09.036
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 曹辉 南京信息工程大学自动化学院 2 0 0.0 0.0
2 翁理国 南京信息工程大学自动化学院 14 38 4.0 5.0
3 张德正 南京信息工程大学自动化学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (162)
共引文献  (49)
参考文献  (19)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(3)
  • 参考文献(0)
  • 二级参考文献(3)
1989(3)
  • 参考文献(0)
  • 二级参考文献(3)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(4)
  • 参考文献(2)
  • 二级参考文献(2)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(9)
  • 参考文献(0)
  • 二级参考文献(9)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(9)
  • 参考文献(0)
  • 二级参考文献(9)
2010(11)
  • 参考文献(1)
  • 二级参考文献(10)
2011(11)
  • 参考文献(0)
  • 二级参考文献(11)
2012(10)
  • 参考文献(0)
  • 二级参考文献(10)
2013(12)
  • 参考文献(1)
  • 二级参考文献(11)
2014(12)
  • 参考文献(2)
  • 二级参考文献(10)
2015(13)
  • 参考文献(0)
  • 二级参考文献(13)
2016(15)
  • 参考文献(3)
  • 二级参考文献(12)
2017(17)
  • 参考文献(0)
  • 二级参考文献(17)
2018(11)
  • 参考文献(8)
  • 二级参考文献(3)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
云雪图像识别
特征提取
跨层连接
空洞卷积
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
相关基金
江苏省自然科学基金
英文译名:Natural Science Foundation of Jiangsu Province
官方网址:http://www.jsnsf.gov.cn/News.aspx?a=37
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导