原文服务方: 现代电子技术       
摘要:
针对传统的图像识别方法很难快速、准确地对考生进行识别从而验证其身份,文中详细地分析了卷积神经网络的原理及特性,提出一种基于多通道输入的稀疏卷积神经网络的考生识别算法,并与支持向量机及传统卷积神经网络进行比较,实验结果表明,该算法提高了考生识别的准确率,而且识别的速度大幅提高.
推荐文章
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于卷积神经网络的图像检测识别算法综述
卷积神经网络
图像检测
图像识别
基于改进的卷积神经网络的人脸识别算法
人脸识别
深度学习
卷积神经网络
Dropout技术
基于三维卷积神经网络的动作识别算法
卷积神经网络
三维卷积
人体姿态估计
动作识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于稀疏卷积神经网络的考生识别算法
来源期刊 现代电子技术 学科
关键词 考生识别 卷积神经网络 人脸识别 身份验证 多通道输入 方法比
年,卷(期) 2019,(13) 所属期刊栏目 信号分析与图像处理
研究方向 页码范围 61-64
页数 4页 分类号 TN911.73-34
字数 语种 中文
DOI 10.16652/j.issn.1004-373x.2019.13.014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 罗双虎 4 0 0.0 0.0
2 周亮 9 4 1.0 1.0
3 赵树枫 13 19 3.0 4.0
4 柯立新 上海市教育委员会信息中心 3 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (35)
共引文献  (126)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(8)
  • 参考文献(0)
  • 二级参考文献(8)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
考生识别
卷积神经网络
人脸识别
身份验证
多通道输入
方法比
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
总被引数(次)
135074
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导