原文服务方: 现代电子技术       
摘要:
人脸性别识别是人脸识别领域研究的热门课题.为了进一步提高人脸性别识别的准确率,在传统的融合模型基础上,提出一种新型全局融合卷积神经网络模型(NFDCNN).在NFDCNN模型结构上,每两采样层之间的卷积层在卷积特征提取之前融合前一级的子采样特征,这种方法可以保留原始的特征信息同时与深层纹理融合,具有高度的还原度,缩小网络误差.NFDCNN模型分类函数在常规的Softmax上做了改进,引入了区域边缘分类函数AM-Softmax,该分类函数在归类上是以一块区域为界限来划分,挤压同类,扩大类间距离,缩小类内距离.实验是在不同的人脸数据集上采用该模型方法与其他先进方法对比,验证了提出的NFDCNN模型分类识别是有效的.
推荐文章
基于卷积神经网络的人脸性别识别
人脸性别识别
卷积神经网络
稀疏连接
权值共享
基于多层特征融合可调监督函数卷积神经网络的人脸性别识别
人脸性别识别
多层特征融合
卷积神经网络
深度学习
基于改进的卷积神经网络的人脸识别算法
人脸识别
深度学习
卷积神经网络
Dropout技术
基于卷积神经网络的人脸图像美感分类
卷积神经网络
LeNet-5
人脸识别
美感分类
图像处理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 全局融合卷积神经网络的边缘分类的人脸性别识别
来源期刊 现代电子技术 学科
关键词 人脸性别识别 卷积神经网络 全局融合 纹理融合 边缘分类 模型验证
年,卷(期) 2019,(18) 所属期刊栏目 人工智能
研究方向 页码范围 177-181,186
页数 6页 分类号 TN915-34|TP391.41
字数 语种 中文
DOI 10.16652/j.issn.1004-373x.2019.18.041
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴军 江西理工大学信息工程学院 31 77 5.0 6.0
2 卢忠亮 江西理工大学信息工程学院 11 23 3.0 4.0
3 邱阳 江西理工大学信息工程学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (46)
共引文献  (38)
参考文献  (9)
节点文献
引证文献  (1)
同被引文献  (6)
二级引证文献  (0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(7)
  • 参考文献(2)
  • 二级参考文献(5)
2016(7)
  • 参考文献(1)
  • 二级参考文献(6)
2017(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(5)
  • 参考文献(3)
  • 二级参考文献(2)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人脸性别识别
卷积神经网络
全局融合
纹理融合
边缘分类
模型验证
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导