原文服务方: 现代电子技术       
摘要:
锂离子电池已经被应用于B787客机,为进一步提高B787锂离子电池的可靠性,针对传统基于相关向量机的电池剩余使用寿命预测方法的不足,提出一种把相关向量机、差分进化算法和粒子群优化算法融合的的方法.通过差分进化算法和粒子群优化算法对相关向量机的参数进行优化,增强其对电池历史监测数据退化趋势的预测能力.应用卡尔曼滤波器对融合算法实施优化,将优化后的预测结果作为在线样本添加到训练集中,对提出的模型重新训练,以此来动态调整系数矩阵和相关向量以执行下一次迭代预测.基于B787锂离子电池测量数据,对所提方法的有效性和鲁棒性进行了验证.
推荐文章
基于IPSO-Elman的锂电池剩余寿命预测
锂电池
剩余寿命预测
IPSO-Elman
预测建模
高斯去噪
参数优化
基于IGA-MRVR的锂离子电池剩余使用寿命预测
电动汽车
锂电池
剩余使用寿命
多核相关向量回归算法
改进遗传算法优化
预测
锂离子电池状态估计与剩余寿命预测方法综述
锂离子电池
荷电状态(SOC)估算
健康度(SOH)估算
剩余寿命(RUL)预测
基于卷积神经网络与双向长短时融合的锂离子电池剩余使用寿命预测
锂离子电池
剩余使用寿命预测
融合神经网络
一维卷积神经网络
双向长短期记忆
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于DEPSO-RVM的B787电池剩余寿命预测
来源期刊 现代电子技术 学科
关键词 剩余寿命预测 相关向量机 B787锂离子电池 差分进化算法 粒子群优化算法 卡尔曼滤波
年,卷(期) 2019,(20) 所属期刊栏目 能源技术
研究方向 页码范围 94-98,102
页数 6页 分类号 TN36-34
字数 语种 中文
DOI 10.16652/j.issn.1004-373x.2019.20.023
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘贵行 中国民航大学工程训练中心 7 6 2.0 2.0
2 穆东旭 中国民航大学电子信息与自动化学院 5 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (104)
共引文献  (75)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(5)
  • 参考文献(1)
  • 二级参考文献(4)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(13)
  • 参考文献(0)
  • 二级参考文献(13)
2012(10)
  • 参考文献(0)
  • 二级参考文献(10)
2013(37)
  • 参考文献(3)
  • 二级参考文献(34)
2014(7)
  • 参考文献(1)
  • 二级参考文献(6)
2015(6)
  • 参考文献(4)
  • 二级参考文献(2)
2016(3)
  • 参考文献(2)
  • 二级参考文献(1)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
剩余寿命预测
相关向量机
B787锂离子电池
差分进化算法
粒子群优化算法
卡尔曼滤波
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
总被引数(次)
135074
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导