摘要:
室温条件下高效消除CO具有重要的意义, 但目前仍具有极大的挑战. 考虑到实际应用环境中存在的水汽, 实现具有应用价值的CO消除过程的关键是设计耐湿性好, 且能够在室温甚至更低温度下具有较高CO氧化活性的催化剂. 以Hopcalite (Cu-Mn-Ox)和Co3O4为代表的氧化物和负载型Au基催化剂具有优异的低温CO氧化活性, 但存在耐湿性差、催化性能重复性不好等缺点, 因而限制了其实际应用. 铂族金属催化剂凭借优异的稳定性和耐湿性成为目前最广泛应用的尾气净化催化剂. 但是由于铂金属位点强吸附CO的毒化作用, CO氧化工作温度多在200 oC以上, 从而限制了其在室内空气净化、燃料电池工业氢源净化以及汽车发动机冷启动阶段尾气净化等过程中的实际应用. 研究人员尝试调节金属粒子尺寸、金属-载体界面、双金属结构及助剂效应等以促进O2的活化或者削弱CO的吸附, 尽管取得了一定的进展, 但仍缺少一种具有普适性和实际CO消除应用前景的铂族金属基催化体系. 本文利用新型Fe(OH)x负载亚纳米Rh催化剂作为室温条件下CO湿氧化的典型例子, 研究H2O对CO氧化反应的影响并探索其反应机制, 旨在为发展实际可用的CO氧化消除催化体系提供参考.活性测试结果表明, H2O的存在可以大幅提高Fe(OH)x负载亚纳米Rh催化剂的CO氧化速率, 并在室温条件下实现CO的长效稳定消除; 而相似共沉淀法制备的Rh/Al2O3催化剂上H2O并没有促进CO氧化. 原位红外表征发现, Fe(OH)x在湿氧化CO过程中的重要作用在于为O2和H2O的吸附提供位点, 促进二者反应生成羟基物种, 并与亚纳米Rh团簇上吸附的CO反应生成CO2. 此外, H2O的存在使得CO氧化的表观活化能由22降至9 kJ mol–1, 说明反应路径或决速步骤由CO+O转变为反应能垒更低的CO+OH, 从而大幅提高了CO氧化反应速率和反应活性. 随后, 时间分辨CO滴定红外实验证明, Rh/Fe(OH)x催化剂表面OH可以与CO反应生成CO2, 而Al2O3负载的纳米Rh催化剂则不能, 从而进一步揭示了Fe(OH)x载体在高效湿氧化消除CO过程中的重要作用. 最后, 通过拓展实验证明该反应机理可以适用于Fe(OH)x负载的其它铂族金属催化剂, 提供了一种具有普适性和实际CO消除应用前景的铂族金属基催化体系.