基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In this study, we analyze brain activity data describing functional magnetic resonance imaging (MRI) imaging of 820 subjects with each subject being scanned at 4 different times. This multiple scanning gives us an opportunity to observe the consistency of imaging characteristics within the subjects as compared to the variability across the subjects. The most consistent characteristics are then used for the purpose of predicting subjects’ traits. We concentrate on four predictive methods (Regression, Logistic Regression, Linear Discriminant Analysis and Random Forest) in order to predict subjects’ traits such as gender and age based on the brain activities observed between brain regions. Those predictions are done based on the adjusted communication activity among the brain regions, as assessed from 4 scans of each subject. Due to a large number of such communications among the 116 brain regions, we performed a preliminary selection of the most promising pairs of brain regions. Logistic Regression performed best in classifying the subject gender based on communication activity among the brain regions. The accuracy rate was 85.6 percent for an AIC step-wise selected Logistic Regression model. On the other hand, the Logistic Regression model maintaining the entire set of ranked predictor was capable of getting an 87.7 percent accuracy rate. It is interesting to point out that the model with the AIC selected features was better classifying males, whereas the complete ranked model was better classifying females. The Random Forest technique performed best for prediction of age (grouped within five categories as provided by the original data) with 48.8 percent accuracy rate. Any set of predictors between 200 and 1600 was presenting similar rates of accuracy.
推荐文章
基于语义的Data Cube数字水印技术
数字水印
语义
数据立方体
版权
Data Transfer Object模式探讨
Data Transfer Object 三层应用 DataSet
Statistics matters in interpretations of non-traditional stable isotopic data
Isotopic data processing
Error propagation
Significant digits
Difference between means with uncertainties
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Predictive Models for Functional MRI Data
来源期刊 统计学期刊(英文) 学科 数学
关键词 FUNCTIONAL Magnetic RESONANCE Imaging Regression LOGISTIC Regression Linear DISCRIMINANT Analysis RANDOM FOREST
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 1-9
页数 9页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
FUNCTIONAL
Magnetic
RESONANCE
Imaging
Regression
LOGISTIC
Regression
Linear
DISCRIMINANT
Analysis
RANDOM
FOREST
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学期刊(英文)
半月刊
2161-718X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
584
总下载数(次)
0
总被引数(次)
0
论文1v1指导