基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The network-based intrusion detection has become common to evaluate machine learning algorithms. Although the KDD Cup’99 Dataset has class imbalance over different intrusion classes, still it plays a significant role to evaluate machine learning algorithms. In this work, we utilize the singular valued decomposition technique for feature dimension reduction. We further reconstruct the features form reduced features and the selected eigenvectors. The reconstruction loss is used to decide the intrusion class for a given network feature. The intrusion class having the smallest reconstruction loss is accepted as the intrusion class in the network for that sample. The proposed system yield 97.90% accuracy on KDD Cup’99 dataset for the stated task. We have also analyzed the system with individual intrusion categories separately. This analysis suggests having a system with the ensemble of multiple classifiers;therefore we also created a random forest classifier. The random forest classifier performs significantly better than the SVD based system. The random forest classifier achieves 99.99% accuracy for intrusion detection on the same training and testing data set.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Comparing the Area of Data Mining Algorithms in Network Intrusion Detection
来源期刊 信息安全(英文) 学科 数学
关键词 Feature Reduction SINGULAR Value Decomposition INTRUSION DETECTION Correlation Analysis Association Impact Scale INTRUSION DETECTION System KDD CUP 1999 Random FOREST
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 1-18
页数 18页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Feature
Reduction
SINGULAR
Value
Decomposition
INTRUSION
DETECTION
Correlation
Analysis
Association
Impact
Scale
INTRUSION
DETECTION
System
KDD
CUP
1999
Random
FOREST
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息安全(英文)
季刊
2153-1234
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
230
总下载数(次)
0
总被引数(次)
0
论文1v1指导