基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Cancer-beating molecules (CBMs) are abundant in many types of food and potentially anti-cancer therapeutic agents. In the previous work, researchers introduced a network-based machine learning platform to identify the cancer-beating molecules, for example,?comparing the similarities in the molecular network between approved anticancer drug and food molecules. Herein, we aim to build on this work to enhance the accuracy of predicting food molecules. In this project, we improve supervised learning approaches by applying Soft Voting algorithm to seven machine learning algorithms: Support Vector Machine with Radial Basis Function (SVM with RBF kernel), multilayer perceptron neural network?(MLP), Random forest, Decision trees,?Gaussian Naive Bayes, Adaboosting, and Bagging. As a result, the accuracy in the dataset of 50 food molecules utilized increased from 82% to 87%, achieving a significant improvement in the precision of?predicting anti-cancer molecules.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Anti-model测试框架的研究与实现
Anti-model测试
组件
面向方面
测试用例
阻燃抗熔融粘胶纤维——Anti-fcell(R)(下)
阻燃纤维
粘胶纤维
Anti-fcell(R)
功能性纺织品
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Machine Learning Prediction for 50 Anti-Cancer Food Molecules from 968 Anti-Cancer Drugs
来源期刊 智能科学国际期刊(英文) 学科 工学
关键词 MACHINE LEARNING FOOD ANTI-CANCER Optimization
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 1-8
页数 8页 分类号 TP1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
MACHINE
LEARNING
FOOD
ANTI-CANCER
Optimization
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能科学国际期刊(英文)
季刊
2163-0283
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
102
总下载数(次)
0
总被引数(次)
0
论文1v1指导