基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
One of the principal difficulties related to road safety management in Brazil is the lack of data on road projects, especially those on rural roads, which makes it difficult to use road safety studies and models from other countries as a reference. Updating road networks through the use of hyperspectral remote sensing images can be a good alternative. However, accurately recognizing and extracting hyperspectral images from roads has been recognized as a challenging task in the processing of hyperspectral data. In order to solve the aforementioned challenges, Hyperion hyperspectral images were combined with the Optimum Forest Path (OPF) algorithm for supervised classification of rural roads and the effectiveness of the OPF and SVM classifiers when applied to these areas was compared. Both classifiers produced reasonable results, however, the OPF algorithm outperformed SVM. The higher classification accuracy obtained by the OPF was mainly attributed to the ability to better distinguish between regions of exposed soil and unpaved roads.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Remote Sensing Applied to the Extraction of Road Geometric Features Based on Optimum Path Forest Classifiers, Northeastern Brazil
来源期刊 地理信息系统(英文) 学科 工学
关键词 ROADS MULTISPECTRAL IMAGES HYPERSPECTRAL IMAGES OPTIMUM Path Forest Algorithm
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 15-44
页数 30页 分类号 TM7
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
ROADS
MULTISPECTRAL
IMAGES
HYPERSPECTRAL
IMAGES
OPTIMUM
Path
Forest
Algorithm
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
地理信息系统(英文)
半月刊
2151-1950
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
143
总下载数(次)
0
总被引数(次)
0
论文1v1指导