摘要:
[背景]大量研究表明气温是影响人群健康的重要因素,而气温变异,尤其隔日气温变异对人群健康影响的研究较少.[目的]比较隔日温差(TCN,隔日平均气温之差)、气温变异(TV,隔日最高气温和最低气温的标准差)以及本研究新提出的根据隔日气温变异的方向和效应大小计算得到的隔日温度总变异(TTV)这三个隔日气温变异指标与居民寿命损失年(YLL)的暴露-反应关系,探索能更好反映隔日气温变异对居民死亡影响的指标.[方法]收集2013—2017年广东省40个区(县)气象数据以及死亡登记资料.采用分布滞后非线性模型(DLNM)和多变量meta分析的两阶段分析方法,分别拟合日夜温差和夜日温差与YLL率(每10万人口YLL值)的暴露-反应关系,提取日夜温差和夜日温差的归因YLL率作为各自权重计算TTV.计算Pearson相关系数,分析三个隔日气象变异指标间的相关性.采用DLNM和多变量meta分析两阶段分析方法,分别分析TCN、TV和TTV与居民YLL率的暴露-反应关系,比较不同隔日气温变异指标对人群死亡影响的差异.[结果]研究期间内广东省40个区(县)日均YLL率为22.3/10万.经计算,TCN平均值为(0.0±1.8)℃,TV为4.6±1.5,TTV平均值为(8.1±2.7)℃,三个指标均趋近正态分布.TCN与TV和TTV相关性较弱(r=0.0979,r=0.0880),而TV与TTV相关性较强(r=0.8891).在控制平均气温的滞后效应后,TCN与YLL率的暴露-反应关系无统计学意义,而TV和TTV与YLL率的暴露-反应关系有统计学意义.TV-YLL和TTV-YLL的暴露-反应关系曲线相似,均呈类似"U"型关系,过低或过高的TV和TTV均会增加人群的YLL率.极端低(第5百分位数)的TV(TV=2.2)和TTV(TTV=2.8℃)的归因YLL率及其95%CI依次为1.0/10万(0.1/10万~1.9/10万)和2.1/10万(0.2/10万~4.0/10万),极端高(第95百分位数)的TV(TV=7.2)和TTV(TTV=12.1℃)的归因YLL率效应值及其95%CI依次为3.1/10万(1.2/10万~5.1/10万)和4.1/10万(2.3/10万~5.8/10万),在极端低和极端高节点上,TTV的YLL率效应值均大于TV,而在中等低和中等高节点上,两个指标的效应相近.[结论]TCN、TV、TTV与YLL的暴露-反应关系存在差异,其中TTV综合考虑了气温变异的程度、方向以及健康效应,更加全面地反映了短时气温变异对人群健康的影响.