基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Stable isotopes of xylem water (18O and D) have been successfully used to determine sources of soil water for plant transpiration, but mainly in drought-prone environments. The water uptake strategies of three representative tree species in Japan, namely cedar (Cryptomeria japonica), larch (Larix kaempferi) and beech (Fagus crenata), were investigated using δ18O and δD of water (precipitation, soil and xylem), together with wood α-cellulose δ13C and δ18O, along one growing season. The study was carried out in the research forest of Yamagata University (Shonai region), a high precipitation area in Japan, which exceeds 3000 mm per year. Precipitation water δ18O and δD increased along the summer growing season, but oxygen and hydrogen isotopic composition of soil water remained essentially unchanged. In general, xylem water isotopes of cedar and larch followed the local meteoric water line, but beech xylem water was decoupled from soil and precipitation values in July and August. For this tree species, the xylem water isotopic records were more depleted than cedar and larch xylem water isotopic values and the precipitation water isotopic records, indicating that beech used more water from soil layers during July-August than the other two species, which mainly used newly-fallen precipitation. Wood δ18O showed an opposite seasonal trend to the one found for xylem water, likely because of leaf water isotope enrichment, which was in turn controlled by seasonal transpiration rate. The higher δ13C values of cedar during summer suggested that this species had enhanced water-use efficiency during the growing season compared with the deciduous species larch and beech. Our results highlight different water use strategies among forest tree species even in areas where the annual water balance is far from limiting plant performance.
推荐文章
Using Sr isotopes to trace the geographic origins of Chinese mitten crabs
Chinese mitten crab
Lakes
Sr isotopes
Geographic origin
Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quali
Groundwater
Multivariate analysis
Geostatistical modeling
Geochemical modeling
Mineralization
Ordinary Kriging
Variations of trace elements under hydrological conditions in the Min River, Eastern Tibetan Plateau
Trace elements
Concentration-discharge relationship
Tibetan Plateau
River
Rare-earth and trace elements and hydrogen and oxygen isotopic compositions of Cretaceous kaolinitic
Rare-earth and trace elements
Oxygen/hydrogen isotopic composition
Kaolinitic sediments
Lower Benue Trough
Nigeria
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Using Water Stable Isotopes to Trace Water Sources of Three Typical Japanese Tree Species under Heavy Rainfall Conditions
来源期刊 林学期刊(英文) 学科 农学
关键词 High Precipitation WATER Use Stable ISOTOPES XYLEM WATER Soil WATER
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 7-21
页数 15页 分类号 S71
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
High
Precipitation
WATER
Use
Stable
ISOTOPES
XYLEM
WATER
Soil
WATER
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
林学期刊(英文)
季刊
2163-0429
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
314
总下载数(次)
0
总被引数(次)
0
期刊文献
相关文献
推荐文献
论文1v1指导