基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
When longitudinal data contains outliers, the classical least-squares approach is known to be not robust. To solve this issue, the exponential squared loss (ESL) function with a tuning parameter has been investigated for longitudinal data. However, to our knowledge, there is no paper to investigate the robust estimation procedure against outliers within the framework of mean-covariance regression analysis for longitudinal data using the ESL function. In this paper, we propose a robust estimation approach for the model parameters of the mean and generalized autoregressive parameters with longitudinal data based on the ESL function. The proposed estimators can be shown to be asymptotically normal under certain conditions. Moreover, we develop an iteratively reweighted least squares (IRLS) algorithm to calculate the parameter estimates, and the balance between the robustness and efficiency can be achieved by choosing appropriate data adaptive tuning parameters. Simulation studies and real data analysis are carried out to illustrate the finite sample performance of the proposed approach.
推荐文章
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 ESL-Based Robust Estimation for Mean-Covariance Regression with Longitudinal Data
来源期刊 统计学期刊(英文) 学科 文学
关键词 EXPONENTIAL Squared Loss Function Within-Subject Correlation Longitudinal Data Modified Cholesky DECOMPOSITION ROBUSTNESS
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 10-30
页数 21页 分类号 H31
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
EXPONENTIAL
Squared
Loss
Function
Within-Subject
Correlation
Longitudinal
Data
Modified
Cholesky
DECOMPOSITION
ROBUSTNESS
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学期刊(英文)
半月刊
2161-718X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
584
总下载数(次)
0
总被引数(次)
0
论文1v1指导