基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Energy forecasting for electricity productivity is the process of applying statistics with possible Quantum or Classical Computing with help from new innovative techniques offered by artificial intelligence to make predictions about consumption levels.This kind of computation presents corresponding utility costs in both the tactical and strategical or short term and long term.Energy forecasting models take into account historical data,trends,weather inputs,tariff structures,and occupancy schedules in the urban city due to population growth,etc.to make predictions.Additionally,energy forecasting as future paradigm is driven by electricity production demand and it is a cost-effective technique to predict future energy needs,which is a paradigm to achieve demand and supply chain equilibrium based on available energy both renewable and non-renewable sources.
推荐文章
Concentration-discharge patterns of weathering products from global rivers
Concentration-discharge
Rivers
Silicate weathering
Solutes
Effect on greenhouse gas balance of converting rice paddies to vegetable production
Greenhouse gas balance
Land management change
CH4
N2O
Soil organic carbon
Effect on greenhouse gas balance of converting rice paddies to vegetable production
Greenhouse gas balance
Land management change
CH4
N2O
Soil organic carbon
德国版智能电网“E-Energy”
智能电网
E-Energy
能源互联网
分布式能源
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Energy Sources Driven Electricity Production: A Global Tactical and Strategical Paradigm
来源期刊 能源与动力工程:英文版 学科 经济
关键词 Quantum computing and computer classical computing and computer artificial intelligence machine learning deep learning fuzzy logic resilience system forecasting and related paradigm big data commercial and urban demand for electricity
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 26-32
页数 7页 分类号 F42
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Quantum
computing
and
computer
classical
computing
and
computer
artificial
intelligence
machine
learning
deep
learning
fuzzy
logic
resilience
system
forecasting
and
related
paradigm
big
data
commercial
and
urban
demand
for
electricity
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
能源与动力工程:英文版
月刊
1934-8975
武汉洪山区卓刀泉北路金桥花园C座4楼
出版文献量(篇)
300
总下载数(次)
0
论文1v1指导