基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Fake news has recently leveraged the power and scale of online social media to effectively spread misinformation which not only erodes the trust of people on traditional presses and journalisms,but also manipulates the opinions and sentiments of the public.Detecting fake news is a daunting challenge due to subtle difference between real and fake news.As a first step of fighting with fake news,this paper characterizes hundreds of popular fake and real news measured by shares,reactions,and comments on Facebook from two perspectives:domain reputations and content understanding.Our domain reputation analysis reveals that the Web sites of the fake and real news publishers exhibit diverse registration behaviors,registration timing,domain rankings,and domain popularity.In addition,fake news tends to disappear from the Web after a certain amount of time.The content characterizations on the fake and real news corpus suggest that simply applying term frequency-inverse document frequency (tf-idf) and Latent Dirichlet Allocation (LDA) topic modeling is inefficient in detecting fake news,while exploring document similarity with the term and word vectors is a very promising direction for predicting fake and real news.To the best of our knowledge,this is the first effort to systematically study domain reputations and content characteristics of fake and real news,which will provide key insights for effectively detecting fake news on social media.
推荐文章
期刊_丙丁烷TDLAS测量系统的吸收峰自动检测
带间级联激光器
调谐半导体激光吸收光谱
雾剂检漏 中红外吸收峰 洛伦兹光谱线型
期刊_联合空间信息的改进低秩稀疏矩阵分解的高光谱异常目标检测
高光谱图像
异常目标检测 低秩稀疏矩阵分解 稀疏矩阵 残差矩阵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Detecting Fake News Over Online Social Media via Domain Reputations and Content Understanding
来源期刊 清华大学学报自然科学版(英文版) 学科
关键词
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 20-27
页数 8页 分类号
字数 语种 英文
DOI 10.26599/TST.2018.9010139
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
清华大学学报自然科学版(英文版)
双月刊
1007-0214
11-3745/N
16开
北京市海淀区双清路学研大厦B座908
1996
eng
出版文献量(篇)
2269
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导