作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This research is interested in the user ratings of Apps on Apple Stores. The purpose of this research is to have a better understanding of some characteristics of the good Apps on Apple Store so Apps makers can potentially focus on these traits to maximize their profit. The data for this research is collected from kaggle.com, and originally collected from iTunes Search API, according to the abstract of the data. Four different attributes contribute directly toward an App’s user rating: rating_count_tot, rating_count_ver, user_rating and user_rating_ver. The relationship between Apps receiving higher ratings and Apps receiving lower ratings is analyzed using Exploratory Data Analysis and Data Science technique “clustering” on their numerical attributes. Apps, which are represented as a data point, with similar characteristics in rating are classified as belonging to the same cluster, while common characteristics of all Apps in the same clusters are the determining traits of Apps for that cluster. Both techniques are achieved using Google Colab and libraries including pandas, numpy, seaborn, and matplotlib. The data reveals direct correlation from number of devices supported and languages supported to user rating and inverse correlation from size and price of the App to user rating. In conclusion, free small Apps that many different types of users are able to use are generally well rated by most users, according to the data.
推荐文章
Apple的自主创新分析
创新理念
独创
模仿
Apple
浅析Apple Pay对国内移动支付产业的影响
移动支付
apple pay token
NFC
手机钱包
The occurrences and geochemical characteristics of thorium in iron ore in the Bayan Obo deposit, Nor
Thorium
Occurrence state
Distribution law
Geochemical characteristics
Iron ore
Bayan Obo deposit
Effects of a proline solution cover on the geochemical and mineralogical characteristics of high-sul
Proline
Coal gangue
Pollution control
Heavy metal fraction
Mineralogical characteristics
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Characteristics Classification of Mobile Apps on Apple Store Using Clustering
来源期刊 数据分析和信息处理(英文) 学科 工学
关键词 MOBILE APPS CLUSTERING User Rating Pairplot SCATTER PLOT FUNCTIONALITY
年,卷(期) 2020,(2) 所属期刊栏目
研究方向 页码范围 69-85
页数 17页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
MOBILE
APPS
CLUSTERING
User
Rating
Pairplot
SCATTER
PLOT
FUNCTIONALITY
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据分析和信息处理(英文)
季刊
2327-7211
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
106
总下载数(次)
0
总被引数(次)
0
论文1v1指导