基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Currently, landfills are the main method used for the final disposal of urban solid waste. The degradation processes that waste goes through in these sites, alongside rainwater that percolates through them, generate highly polluting liquids (leachate). In the treatment of leachate, advanced oxidation processes (AOP) can significantly reduce the concentrations of different pollutants. Due to the high documented potential around AOPs, in this study, the effectiveness of anodic oxidation in the removal of the remaining organic load in leachates pretreated in a biological system was evaluated. Graphite electrodes were used as anode and cathode. The efficiency of anodic oxidation, in terms of the removal of chemical oxygen demand (COD) and color, was evaluated under different current densities (7, 12, 17 and 22 mA/cm2) and pH values (3, 4.5 and 6). Under the best conditions found (22 mA/cm2 and pH of 6) and with an oxidation time of 5 hours, a maximum removal of 68% in COD and 91% in color was achieved, which represented a quality in the final effluent of 271 mg/L and 151 Pt-Co in COD and color, respectively. Therefore, considering that graphite is an economic and widely available material, the results obtained show anodic oxidation, with the use of graphite electrodes, as a technically viable alternative as a final purification stage for pretreated leachates.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Application of Anodic Oxidation with Graphite Electrodes in Pretreated Leachates
来源期刊 应用科学(英文) 学科 地球科学
关键词 Anodic OXIDATION GRAPHITE ELECTRODES ADVANCED OXIDATION PROCESSES
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 69-77
页数 9页 分类号 X70
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Anodic
OXIDATION
GRAPHITE
ELECTRODES
ADVANCED
OXIDATION
PROCESSES
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用科学(英文)
月刊
2165-3917
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
247
总下载数(次)
0
总被引数(次)
0
论文1v1指导