基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In recent years,machine learning technology has made great success in fields of computer vision,natural language processing,speech recognition and so on.And machine learning model has been widely used in face recognition,automatic driving,malware detection,intelligent medical analysis and other practical tasks.In this paper,attention mechanism is proposed to combine with LSTM model to extract features in text classification.The results show that,on the one hand,LSTM+Attention can improve classification performance;on the other hand,by sorting by word weights generated by the attention layer,we find some meaningful word features,however,its recognition performance is not good.Some possible reasons were analyzed and it was found that attention mechanism sometimes misjudges wrong word features,resulting from these wrong words often appearing at the same time with meaningful word features.
推荐文章
Text-CRNN+attention架构下的多类别文本信息分类
文本分类
卷积神经网络
循环神经网络
convolutional recurre ntneural network
注意力机制
Determination of brominated diphenyl ethers in atmospheric particulate matter using selective pressu
Brominated diphenyl ethers
Atmospheric particulate matters
Selective pressurised liquid extraction
Gas chromatography-mass spectrometry
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Feature Extraction by Using Attention Mechanism in Text Classification
来源期刊 国际计算机前沿大会会议论文集 学科 工学
关键词 LSTM AttentionFeature extraction INTERPRETABILITY Text classification
年,卷(期) 2020,(2) 所属期刊栏目
研究方向 页码范围 77-89
页数 13页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
LSTM
AttentionFeature
extraction
INTERPRETABILITY
Text
classification
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导