基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In this study, we investigate the effects of missing data when estimating HIV/TB co-infection. We revisit the concept of missing data and examine three available approaches for dealing with missingness. The main objective is to identify the best method for correcting missing data in TB/HIV Co-infection setting. We employ both empirical data analysis and extensive simulation study to examine the effects of missing data, the accuracy, sensitivity, specificity and train and test error for different approaches. The novelty of this work hinges on the use of modern statistical learning algorithm when treating missingness. In the empirical analysis, both HIV data and TB-HIV co-infection data imputations were performed, and the missing values were imputed using different approaches. In the simulation study, sets of 0% (Complete case), 10%, 30%, 50% and 80% of the data were drawn randomly and replaced with missing values. Results show complete cases only had a co-infection rate (95% Confidence Interval band) of 29% (25%, 33%), weighted method 27% (23%, 31%), likelihood-based approach 26% (24%, 28%) and multiple imputation approach 21% (20%, 22%). In conclusion, MI remains the best approach for dealing with missing data and failure to apply it, results to overestimation of HIV/TB co-infection rate by 8%.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Spatial analysis of carbon storage density of mid-subtropical forests using geostatistics: a case st
Carbon storage density
Geostatistics
Mid-subtropical forests
Spatial autocorrelation
Spatial heterogeneity
Statistics matters in interpretations of non-traditional stable isotopic data
Isotopic data processing
Error propagation
Significant digits
Difference between means with uncertainties
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Using Statistical Learning to Treat Missing Data: A Case of HIV/TB Co-Infection in Kenya
来源期刊 数据分析和信息处理(英文) 学科 医学
关键词 Missing Data HIV/TB Co-Infection IMPUTATION Missing at Random Count Data
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 110-133
页数 24页 分类号 R51
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Missing
Data
HIV/TB
Co-Infection
IMPUTATION
Missing
at
Random
Count
Data
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据分析和信息处理(英文)
季刊
2327-7211
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
106
总下载数(次)
0
总被引数(次)
0
论文1v1指导