基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决传统算法中人工提取特征的缺陷,提出了基于卷积神经网络的玉米品种识别算法.以登海518、浚单20和郑单9583个玉米品种为研究对象,制作数据集并进行分类标签,分别标记为0、1、2.使用Keras学习框架搭建网络模型,包括1个输入层、5个连续的卷积池化结构、3个全连接层和1个输出层.卷积层提取有效的特征信息,结合Leaky ReLU激活函数传递至下一层,输出层采用Softmax函数实现玉米品种的识别.使用完成训练的模型对预测集进行预测.结果表明:登海518、浚单20、郑单958的识别率分别达到100.00%、93.99%、92.49%,平均识别率达到95.49%.
推荐文章
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
基于卷积神经网络的车牌识别
卷积神经网络
车牌识别
模型训练
权值共享
基于稀疏卷积神经网络的考生识别算法
考生识别
卷积神经网络
人脸识别
身份验证
多通道输入
方法比
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的玉米品种识别
来源期刊 江苏农业学报 学科 工学
关键词 玉米 品种识别 卷积神经网络 Keras学习框架
年,卷(期) 2020,(1) 所属期刊栏目 遗传育种?生理生化
研究方向 页码范围 18-23
页数 6页 分类号 TP391
字数 4129字 语种 中文
DOI 10.3969/j.issn.1000-4440.2020.01.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 徐岩 山东科技大学电子信息工程学院 33 68 5.0 7.0
2 刘林 山东科技大学电子信息工程学院 2 0 0.0 0.0
3 李中远 山东科技大学电子信息工程学院 1 0 0.0 0.0
4 高照 山东科技大学电子信息工程学院 2 0 0.0 0.0
5 李晓振 山东科技大学电子信息工程学院 3 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (146)
共引文献  (196)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1959(2)
  • 参考文献(0)
  • 二级参考文献(2)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(3)
  • 参考文献(0)
  • 二级参考文献(3)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(5)
  • 参考文献(0)
  • 二级参考文献(5)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(5)
  • 参考文献(0)
  • 二级参考文献(5)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(10)
  • 参考文献(1)
  • 二级参考文献(9)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(9)
  • 参考文献(1)
  • 二级参考文献(8)
2009(8)
  • 参考文献(1)
  • 二级参考文献(7)
2010(9)
  • 参考文献(1)
  • 二级参考文献(8)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(12)
  • 参考文献(0)
  • 二级参考文献(12)
2014(14)
  • 参考文献(2)
  • 二级参考文献(12)
2015(9)
  • 参考文献(1)
  • 二级参考文献(8)
2016(7)
  • 参考文献(1)
  • 二级参考文献(6)
2017(5)
  • 参考文献(1)
  • 二级参考文献(4)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
玉米
品种识别
卷积神经网络
Keras学习框架
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
江苏农业学报
双月刊
1000-4440
32-1213/S
大16开
南京市孝陵卫钟灵街50号省农科院内
28-113
1985
chi
出版文献量(篇)
3989
总下载数(次)
8
总被引数(次)
36498
论文1v1指导